浏览全部资源
扫码关注微信
1.中国计量大学 材料与化学学院,浙江 杭州 310018
2.中国计量科学研究院 化学计量与分析科学研究所,北京 100029
高 燕,博士,副研究员,研究方向:新污染物分析方法与标准物质研究,E-mail:gaoyan@nim.ac.cn
陈 智,博士,副教授,研究方向:新材料开发及环境与能源应用,E-mail:zchen@cjlu.edu.cn
张庆合,博士,研究员,研究方向:化学计量,E-mail:zhangqh@nim.ac.cn
收稿日期:2024-12-25,
修回日期:2025-02-24,
录用日期:2025-03-03,
纸质出版日期:2025-08-15
移动端阅览
胡静蕾,高燕,李秀琴,陈智,张庆合.全氟丁基磺酸钾溶液标准物质研制与不确定度评定[J].分析测试学报,2025,44(08):1594-1601.
HU Jing-lei,GAO Yan,LI Xiu-qin,CHEN Zhi,ZHANG Qing-he.Development and Uncertainty Evaluation of Potassium Perfluorobutanesulfonate Solution Reference Material[J].Journal of Instrumental Analysis,2025,44(08):1594-1601.
胡静蕾,高燕,李秀琴,陈智,张庆合.全氟丁基磺酸钾溶液标准物质研制与不确定度评定[J].分析测试学报,2025,44(08):1594-1601. DOI: 10.12452/j.fxcsxb.24122536.
HU Jing-lei,GAO Yan,LI Xiu-qin,CHEN Zhi,ZHANG Qing-he.Development and Uncertainty Evaluation of Potassium Perfluorobutanesulfonate Solution Reference Material[J].Journal of Instrumental Analysis,2025,44(08):1594-1601. DOI: 10.12452/j.fxcsxb.24122536.
针对环境、食品等基质中新污染物检测计量溯源的需求,研制了甲醇中全氟丁基磺酸钾(PFBS)溶液标准物质。通过液相色谱-静电场轨道阱高分辨质谱、
19
F-核磁共振波谱对PFBS纯品原料进行定性分析。采用质量平衡法对PFBS纯品原料进行纯度定值,其中结构类似物杂质采用高效液相色谱-电雾式检测器(HPLC-CAD)进行测定,水分采用卡尔费休法进行测定,无机元素采用电感耦合等离子体-质谱(ICP-MS)测定,挥发性溶剂采用顶空气相色谱-氢火焰离子化检测器(GC-FID)测定。质量平衡法测得PFBS原料纯度为99.57%。甲醇中PFBS溶液标准物质采用重量-容量法制备,质量浓度为50.5 μg/mL。对PFBS溶液标准物质进行均匀性检验、短期和长期稳定性检验,结果显示,该溶液标准物质的均匀性、稳定性良好;对其进行不确定度评定,包括原料纯度定值、溶液配制过程、溶液均匀性和稳定性等主要不确定度分量,合成相对标准不确定度为1%,相对扩展不确定度为2%(
k=
2)。该标准物质为国内首次获批的全氟化合物类国家有证标准物质,能够保证相关检测结果的溯源性、可比性和准确性。
To meet the traceability requirements for detecting emerging pollutan
ts in the environment and food,a certified reference material(CRM) of potassium perfluorobutanesulfonate(PFBS) in methanol was developed. Qualitative analysis of the potassium perfluorobutanesulfonate raw materials was conducted using high performance liquid chromatography coupled with orbitrap high-resolution mass spectrometry(HPLC-QE Plus Orbitrap). The chemical structure of PFBS was further conclusively verified via fluorine-19 nuclear magnetic resonance spectroscopy,where characteristic peaks were assigned through chemical shift analysis. The purity of potassium perfluorobutanesulfonate raw material was determined using the mass balance method. Structurally similar impurities were analyzed using high performance liquid chromatography coupled with a charged aerosol detector(HPLC-CAD),which provided a universal response to structurally similar compounds,with the HPLC purity of 99.91%. Moisture content was measured by Karl Fischer titration,with the moisture content of 0.05%. Inorganic elements were quantified via inductively coupled plasma mass spectrometry(ICP-MS),with the content of 0.08%. Volatile solvents were determined using a headspace gas chromatography coupled with flame ionization detector(GC-FID),with the content of 0.21%. The purity of PFBS verified using mass balance method was 99.57%. The reference material of PFBS in methanol was prepared using the gravimetric-volumetric method. Homogeneity,long-term and short-term stability tests were conducted. Homogeneity test was conducted through stratified random sampling of 15 units across the production batch of 300 units. The homogeneity of the reference material was found to be satisfactory. Long-term stability was conducted at room temperature for 24 months,while short-term stability test was conducted at 50 ℃ for 14 days. Stability trends were assessed using linear regression models,and no significant trend was found for both short-term and long-term stability test. Afterwards,the uncertainty of the solution reference material was evaluated. The uncer
tainty evaluation encompassed major components such as the purity assignment of the PFBS raw material,the preparation process of solution,homogeneity test,short-term stability test and long-term stability test,with the relative uncertainty of 0.10%,0.43%,0.69%,0.26% and 0.34% individually. The certified value of the developed CRM was 50.5 μg/mL. The combined relative standard uncertainty was 1%,with an expanded uncertainty of 2% (
k
=2). It has been approved as the first national certified reference material for perfluoroalkyl substances in China. The PFBS solution CRM can ensure the traceability,comparability,and accuracy of related measurement results. For instance,PFBS quantification in complex matrices such as drinking water,biological samples,food samples and agricultural products.
Jitka B , Melymuk L , Vojta Š , Klára K , Klánová J . Chemosphere , 2016 , 164 : 322 - 329 .
Zhou X Y , Lu Y , Luo Y D , Li J , Wang Y W . J. Instrum. Anal. (周鑫月,卢瑶,罗雅丹,黎娟,王亚韡. 分析测试学报), 2024 , 43 ( 8 ): 1166 - 1179 .
Qian J H , Zhu Q H , Wan J , Wang J X , Zhang W , Yang J . J. Instrum. Anal. (钱佳浩,朱清禾,万江,王佳希,张卫,杨洁. 分析测试学报), 2022 , 41 ( 3 ): 319 - 326 .
De Silva A O , Armitage J M , Bruton T A , D'Assunção C , Heiger-Bernays W , Hu X C , Kärrman A , Kelly B , Ng C , Robuck A , Sun M , Webster T F , Sunderland E M . Environ. Toxicol. Chem. , 2021 , 40 ( 3 ): 631 - 657 .
ConventionStockholm . The New POPs Under the Stockholm Convention,2023 . [ 2024-12-02 ]. https://www.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx https://www.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx .
Ministry of Ecology and Environment . List of New Pollutants Under Key Control(2023 Edition)(生态环境部 . 重点管控新污染物清单(2023年版)) . [ 2024-12-02 ]. https://www.gov.cn/zhengce/2022-12/30/content_5734728.htm https://www.gov.cn/zhengce/2022-12/30/content_5734728.htm .
Cheng J , Liang G Y , Feng W F , Zhou Z , Wang L , Liang Y . J . Environ. Chem. (程静,梁光愉,冯雯凤,周珍,王玲,梁勇. 环境化学), 2024 , 43 ( 12 ): 1 - 22 .
Zhou J , Li Z , Guo X , Li Y , Wu Z , Zhu L . J. Hazard. Mater. , 2019 , 377 : 78 - 87 .
Brendel S , Fetter É , Staude C , Vierke L , Biegel-Engler A . Environ. Sci. Eur. , 2018 , 30 : 1 - 11 .
Bao J , Yu W J , Liu Y , Wang X , Jin Y H , Dong G H . Ecotoxicol. Environ. Saf. , 2019 , 171 : 199 - 205 .
Zhang X L , Li H Z , You J . J. Instrum. Anal. (张晓蕾, 李慧珍,游静. 分析测试学报), 2024 , 43 ( 8 ): 1204 - 1211 .
Zhang S , Lei X , Zhang Y , Shi R , Zhang Q , Gao Y , Yuan T , Li J , Tian Y . Chemosphere , 2022 , 307 : 136077 .
Min E K , Lee H , Sung E J , Seo S W , Song M , Wang S , Kim S S , Bae M A , Kim T Y , Lee S , Kim K T . J. Hazard. Mater. , 2023 , 457 : 131714 .
Chen L , Lam J C W , Tang L , Hu C , Liu M , Lam P K S , Zhou B . Environ. Sci. Technol. , 2020 , 54 ( 12 ): 7494 - 7503 .
Christel S M . Inclusion of Substances of Very High Concern in the Candidate List for Eventual Inclusion in Annex XIV,2020 . [ 2024-12-02 ]. https://echa.europa.eu/documents/10162/079c04a0-2464-4168-f132-a22ffb04d910 https://echa.europa.eu/documents/10162/079c04a0-2464-4168-f132-a22ffb04d910 .
Lu X H , Bo M , Wu X , Lu L , Wang B . J. Chem. Reagents (卢晓华,薄梦,吴雪,陆琳,汪斌. 化学试剂), 2022 , 44 ( 10 ): 1403 - 1410 .
Zhang Q H , Yang J S , Jiao H , Li X Q . J. Chem. Reagents (张庆合,杨吉双,焦慧,李秀琴. 化学试剂), 2020 , 42 ( 8 ): 931 - 939 .
Singer E . Perfluorobutane Sulfonic Acid(PFBuS) Mass Spectrum [Internet]. Massbank , 2015 . [ 2025-2-21 ]. https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-Eawag-EQ367553&dsn=Eawag https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-Eawag-EQ367553&dsn=Eawag .
Magnusson L E , Risley D S , Koropchak J A . J. Chromatogr. A , 2015 , 1421 ( 20 ): 68 - 81 .
Gorecki T , Lynen F , Szucs R , Sandra P . J. Anal. Chem. , 2006 , 78 ( 9 ): 3186 - 3192 .
Eckardt M , Kubicova M , Simat T J . J. Chromatogr. A , 2018 , 1572 ( 19 ): 187 - 202 .
Chen R A , Gao Y , Chu H T , Zhang Q H . J. Chem. Reagents (陈日安,高燕,初红涛,张庆合. 化学试剂), 2023 , 45 ( 9 ): 134 - 139 .
JJF 1343 - 2022 . Characterization,Homegeneity and Stability Assessment of Reference Materials. National Institute of Metrology (标准物质的定值及均匀性、稳定性评估. 中国计量科学研究院) .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构