浏览全部资源
扫码关注微信
1.江苏省药品监督检验研究院,江苏 南京 210019
2.中国药科大学 中药学院,江苏 南京 211198
3.国家药品监督管理局化学药品杂质谱重点实验室,江苏 南京 210019
芦 丽,硕士,副主任药师,研究方向:药品、化妆品质量分析及安全性评价,E-mail:flyluli@126.com
方方,硕士,主任药师,研究方向:药品、化妆品质量分析及安全性评价,E-mail:83ff@163.com
收稿日期:2024-12-23,
修回日期:2025-01-09,
录用日期:2025-01-13,
纸质出版日期:2025-06-15
移动端阅览
向健华,芦丽,方方,石心红.紫外光谱结合机器学习算法的祛痘类化妆品中4种禁用抗感染类药物快速筛查[J].分析测试学报,2025,44(06):1096-1106.
XIANG Jian-hua,LU Li,FANG Fang,SHI Xin-hong.Rapid Screening of 4 Banned Substances in Acne-clearing Cosmetics by UV Spectroscopy Combined with Machine Learning Algorithm[J].Journal of Instrumental Analysis,2025,44(06):1096-1106.
向健华,芦丽,方方,石心红.紫外光谱结合机器学习算法的祛痘类化妆品中4种禁用抗感染类药物快速筛查[J].分析测试学报,2025,44(06):1096-1106. DOI: 10.12452/j.fxcsxb.24122328.
XIANG Jian-hua,LU Li,FANG Fang,SHI Xin-hong.Rapid Screening of 4 Banned Substances in Acne-clearing Cosmetics by UV Spectroscopy Combined with Machine Learning Algorithm[J].Journal of Instrumental Analysis,2025,44(06):1096-1106. DOI: 10.12452/j.fxcsxb.24122328.
基于紫外光谱结合机器学习算法,以甲硝唑、酮康唑、氯霉素和诺氟沙星4种常见禁用抗感染类药物为模型物质,建立了一种适用于祛痘类化妆品中非法添加禁用药物的快速筛查定性模型。该研究共采集167批祛痘类化妆品的紫外光谱,采用二维相关光谱(2D-COS)进行紫外光谱特征波段选择,通过对比22种光谱预处理方法、3种机器学习算法、3种数据集划分比例下各模型的效果,建立了分别含甲硝唑、酮康唑、氯霉素、诺氟沙星的阳性样品和阴性样品的五分类定性模型。结果表明,选择190~360 nm的紫外光谱,经标准正态变量变换(SNV)和Savitzky-Golay卷积平滑(SG)联合处理,选用训练集与预测集划分比例7∶3,采用误差逆传播(BP)神经网络算法建立定性分类模型时,模型训练集与预测集的准确率分别可达96.58%和98.00%,具有良好的预测与泛化能力。此方法能有效对化妆品中4种禁用抗感染药物进行快速准确筛查鉴别,不仅节省了检测成本与时间,提高了检测效率,为化妆品中非法添加禁用物质的检测提供了一种新型智能化的手段,也为未来不断更新迭代的非法添加禁用物质的快速筛查提供了新的思路和解决方案,且可助力现场快检。
A qualitative model for rapid screening of metronidazole,ketoconazole,chloramphenicol and norfloxacin in acne-clearing cosmetics was developed based on ultraviolet spectrum of cosmetics combined with machine learning algorithms. In this study,ultraviolet spectra of 167 batches of acne-clearing cosmetics were collected for model building. The two-dimensional correlation spectroscopy(2D-COS) technique was used for ultraviolet spectra feature band selection,and the effect of each model was compared under 22 spectral preprocessing methods,three machine learning algorithms,and three dataset division ratios. Five-classification qualitative models were established for positive and negative samples containing metronidazole,ketoconazole,chloramphenicol and norfloxacin,respectively.The results showed that the ultraviolet spectra of 190-360 nm were selected to be processed jointly by standard normal variables(SNV) and Savitzky-Golay convolutional smoothing(SG),and the ratio of training set to prediction set division of 7∶3 was chosen to build a qualitative classification model using the error back propagation(BP) neural network algorithm. The accuracy of the model training set and prediction set can reach 96.58% and 98.00%,respectively,with good prediction and generalisation ability. This method can effectively screen and identify the four banned anti-infective drugs in cosmetics quickly and accurately,which not only saves the detection cost and time and improves the detection efficiency,but also helps the on-site rapid inspection and provides a rapid and intelligent solution for the detection of illegal addition of banned substances in cosmetics.
General Office of the State Council of the People's Republic of China . Regulation on the Supervision and Administration of Cosmetics(国务院 . 化妆品监督管理条例) . [ 2024-12-09 ]. https://www.gov.cn/zhengce/content/2020-06/29/content_5522593.htm https://www.gov.cn/zhengce/content/2020-06/29/content_5522593.htm .
Wang H , Wang S P , Tian S Y . Food Drug. (王慧,王胜鹏,田思雨. 食品与药品), 2022 , 24 ( 6 ): 570 - 574 .
Wang H Y , Li B , Sun L , Lu Y . Chin. Food Drug Adm. (王海燕 , 李彬 , 孙磊 , 路勇 . 中国食品药品监管) , 2020 ,( 5 ): 72 - 79 .
Chen G Q , Liu X J , Huang J Y , Liang Z Y , Xiao S X . Chin. Food Drug Adm. (陈桂琴,刘小娟,黄佳颖,梁柱业,肖树雄 . 中国食品药品监管) , 2023 ,( 2 ): 90 - 97,152 .
Li L , Li S , Wang H Y , Sun L . Flavour Fragrance Cosmet. (李莉,李硕,王海燕,孙磊. 香精香料化妆品), 2022 , 6 ( 3 ): 10 - 13 .
Lu L L , Qian Y F , Zhang B , Lu H , Chen L B , Min C Y , Chen W . China Surfactant Deterg. Cosmet. (陆林玲,钱叶飞,张斌,鲁辉,陈丽波,闵春艳,陈卫. 日用化学工业), 2022 , 52 ( 2 ): 214 - 223 .
China Food and Drug Administration . State Drug Administration on the Inclusion of Testing Methods for Hormone Ingredients in Cosmetics and Testing Methods for Anti-infective Drugs in Cosmetics in the Technical Specifications for Cosmetic Safety(2015 edition) Notice(国家食品药品监督管理总局 . 国家药监局关于将化妆品中激素类成分的检测方法和化妆品中抗感染类药物的检测方法纳入化妆品安全技术规范(2015年版)的通告)(2019年第66号) . [ 2024-12-09 ]. https://www.nmpa.gov.cn/hzhp/hzhpfgwj/hzhpgzwj/20190927152001264.html https://www.nmpa.gov.cn/hzhp/hzhpfgwj/hzhpgzwj/20190927152001264.html .
Zhang L T , Huang S Y , Yang X , Lu Y N . Chin. J. Anal. Lab. (张林田,黄少玉,杨晞,陆奕娜. 分析试验室), 2015 , 34 ( 12 ): 1403 - 1407 .
Fu C Y , Liang Y , Xu W J , Zhuang C J . J. Environ. Health (符策奕,梁颖,许文佳,庄彩静. 环境与健康杂志), 2024 , 41 ( 3 ): 255 - 258 .
Wang X , Chen R . China Pharm. (汪鑫,陈蓉. 中国药师), 2018 , 21 ( 8 ): 1388 - 1392 .
Zheng L J , Shu Z , Wang C S , Ling M , Teng Y L . Guangdong Chem. Ind. (郑篮君,舒展,王琤帅,凌明,滕云龙. 广东化工), 2024 , 51 ( 4 ): 125 - 128 .
Li Q Y , Yu H Y , Hu D F , Sun D J , Cui J W . J. Pharm. Res. (李启艳,于海英,胡德福,孙德军,崔基炜. 药学研究), 2020 , 39 ( 2 ): 92 - 95 .
He D , Li X Y , Xian Y P , Fang J , Guo X D . J. Instrum. Anal. (何东,李秀英,冼燕萍,方军,郭新东. 分析测试学报), 2015 , 34 ( 8 ): 911 - 916 .
Bian X H , Liu Y , Wang Y , Zhang Q , Zhang Y . J. Instrum. Anal. (卞希慧,刘雨,王瑶,张强,张妍. 分析测试学报), 2025 , 44 ( 2 ): 229 - 237 .
She L L , Wang L , Jiang H J , Li C Y , Yu G H . China Brew. (佘露露,王蕾,蒋洪久,李朝云,玉光惠. 中国酿造), 2023 , 42 ( 9 ): 211 - 216 .
Tian S J , Zhang Y M . Comput. Eng. Soft. (田世杰,张一名. 软件), 2023 , 44 ( 7 ): 70 - 75 .
Hu Y F , Huang Z Q , Wang C L . Guangdong Agric. Sci. (胡月芳,黄志强,王灿玲. 广东农业科学), 2015 , 42 ( 23 ): 112 - 116 .
Yu S B , Huang Z J , Zhao X R , Wu Q X , Jia J J , Ma L , Wang H M , Wang S T , Shen C H . J. Instrum. Anal. (余松柏,黄张君,赵兴蓉,吴奇霄,贾俊杰,马龙,王红梅,王松涛,沈才洪. 分析测试学报), 2025 , 44 ( 3 ): 544 - 561 .
Wu C L , Wang Q Y , Suo T C , Zhao J , Li Z . Chin. J. Mod. Appl. Pharm. (吴晨璐,王秋悦,所同川,赵静,李正. 中国现代应用药学), 2023 , 40 ( 6 ): 736 - 742 .
Yang S . Study on the Origin Tracing of Chinese Medicinal Materials Based on Automatic Machine Learning . Hangzhou : Zhejiang Gongshang University (杨帅. 基于自动机器学习的中药材产地溯源研究. 杭州:浙江工商大学), 2023 .
Liu W , Qiu X W , Jiang L W , Fan W , Li P , Zheng Y . J. Instrum. Anal. (柳薇,邱熙文,蒋立文,范伟,李跑,郑郁. 分析测试学报), 2025 , 44 ( 2 ): 246 - 252 .
Wang G , Li Z , Zhang J , Sun C G , Ren Y Y , He Z Y . Instrum. Tech. Sens. (王刚 , 李志 , 张杰 , 孙晨光 , 任颜颜 , 何朝阳 . 仪表技术与传感器) , 2022 ,( 11 ): 113 - 118 .
Zhang S Z , Zhang M J . Chem. Res. Appl. (张世芝,张明锦. 化学研究与应用), 2020 , 32 ( 11 ): 1967 - 1972 .
Ma X . Research on Multispectral Water Quality Detection Based on Machine Learning . Nanjing : Nanjing Forestry University (马鑫.基于机器学习的多光谱水质检测研究. 南京:南京林业大学), 2023 .
Diwu P Y , Bian X H , Wang Z F , Liu W . Spectrosc. Spectral Anal. (第五鹏瑶,卞希慧,王姿方,刘巍. 光谱学与光谱分析), 2019 , 39 ( 9 ): 2800 - 2806 .
Zhou Z H . Machine Learning. Beijing:Tsinghua University Press(周志华. 机器学习. 北京:清华大学出版社) , 2016 : 25 - 26 .
Liu W Z , Zhou X J , Ping F J , Su Y , Ju Y L , Fang Y L , Yang J H . J. Agric. Mach. (刘文政,周雪健,平凤娇,苏媛,鞠延仑,房玉林,杨继红. 农业机械学报), 2024 , 55 ( 2 ): 372 - 383 .
Noda I . J. Am. Chem. Soc. , 1989 , 111 ( 21 ): 8116 - 8118 .
Noda I . Vib. Spectrosc. , 2004 , 36 ( 2 ): 143 - 165 .
Li C X , Sun Z Y , Zhao Y , Yin L H , Chen W L , Liu R , Xu K X . Spectrosc. Spectral Anal. (李晨曦,孙泽宇,赵瑜,尹利辉,陈文亮,刘蓉,徐可欣. 光谱学与光谱分析), 2023 , 43 ( 7 ): 1993 - 2001 .
Zhang S Y . J. Ocean Technol. (张随艳. 海洋技术学报), 2024 , 43 ( 5 ): 36 - 42 .
Liu J N , Zhu Y , Li Y J , Han J . Grain Sci. Technol. Economy (刘迦南,朱洋,李艺嘉,韩婧. 粮食科技与经济), 2018 , 43 ( 9 ): 117 - 119 .
Ning B F . Tea Fujian (宁必锋. 福建茶叶), 2019 , 41 ( 8 ): 221 .
Tyralis H , Papacharalampous G , Langousis A . Water , 2019 , 11 ( 5 ): 910 .
Guan C , Liu M Y , Man W D , Zhang Y B , Zhang Q W , Fang H , Li X , Gao H F . Spectrosc. Spectral Anal. (管铖,刘明月,满卫东,张永彬,张清文,方铧,李想,高汇锋. 光谱学与光谱分析), 2024 , 44 ( 10 ): 2993 - 3000 .
Li C J , Liu Y D , Qin T Y , Wang Y H , Fan Y F , Yao P F , Sun C , Bi Z Z , Bai J P . Spectrosc. Spectral Anal. (李成举,刘寅笃,秦天元,王一好,范又方,姚攀锋,孙超,毕真真,白江平. 光谱学与光谱分析), 2024 , 44 ( 4 ): 1117 - 1127 .
Liu Z H , You Z Y , Liu J F , Liu X H , Zhao X F , Li Z Q , Zhang W B , Li H Y , Yin Y H , Shi L W . Geoscience (刘子华,尤中义,刘玖芬,刘晓煌,赵晓峰,李子奇,张文博,李洪宇,尹永会,石连武. 现代地质), 2025 , 39 ( 2 ): 420 - 428 .
Xu P F , Cheng Q , Jin P B . Resour. Environ. Yangtze Val. (徐鹏飞,程乾,金平斌. 长江流域资源与环境), 2021 , 30 ( 7 ): 1670 - 1679 .
Zhu Y F , Zhu L , Li J G , Chen Y J , Zhang Y H , Hou H Q , Ju X , Zhang Y Z . Acta Sci. Circumstantiae (朱云芳,朱利,李家国,陈宜金,张永红,侯海倩,鞠星,张雅洲. 环境科学学报), 2017 , 37 ( 1 ): 130 - 137 .
Wang X Y , Yu Z W , He Y , Wang T , Huang Z H , Ji R D . Chin. J. Anal. Lab. (王晓燕 , 喻志伟 , 何莹 , 汪涛 , 黄梓涵 , 季仁东 . 分析试验室) , http://kns.cnki.net/kcms/detail/11.2017.TF.20241031.1623.030.html http://kns.cnki.net/kcms/detail/11.2017.TF.20241031.1623.030.html .
Wu M X , Zhang D L . China Meas. Test (武美先,张东利 . 中国测试) , 2023 , 49 ( S2 ): 1 - 6 .
0
浏览量
65
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构