浏览全部资源
扫码关注微信
1.湖南工业职业技术学院 机械工程学院,湖南 长沙 410208
2.湖南师范大学 工程与设计学院, 湖南 长沙 410083
蔡耀仪,博士,副教授,研究方向:拉曼光谱分析,工业参数在线检测,E-mail:cyy@hunnu.edu.cn
收稿日期:2024-12-05,
修回日期:2025-02-19,
录用日期:2025-02-20,
纸质出版日期:2025-06-15
移动端阅览
向艳芳,石红,张家臣,蔡耀仪.便携式拉曼光谱仪结合CGAN-Multi-CNN模型的矿物精确识别方法研究[J].分析测试学报,2025,44(06):1075-1085.
XIANG Yan-fang,SHI Hong,ZHANG Jia-chen,CAI Yao-yi.Rapid Mineral Identification Based on Portable Raman Spectroscopy Equipment Combined with CGAN-Multi-CNN Model[J].Journal of Instrumental Analysis,2025,44(06):1075-1085.
向艳芳,石红,张家臣,蔡耀仪.便携式拉曼光谱仪结合CGAN-Multi-CNN模型的矿物精确识别方法研究[J].分析测试学报,2025,44(06):1075-1085. DOI: 10.12452/j.fxcsxb.241205581.
XIANG Yan-fang,SHI Hong,ZHANG Jia-chen,CAI Yao-yi.Rapid Mineral Identification Based on Portable Raman Spectroscopy Equipment Combined with CGAN-Multi-CNN Model[J].Journal of Instrumental Analysis,2025,44(06):1075-1085. DOI: 10.12452/j.fxcsxb.241205581.
野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼光谱分类模型,并联立便携式拉曼光谱仪实现了野外未知矿物的快速识别。首先,三次样条曲线拟合算法被用于实现不同设备所采集光谱的维数匹配,从而消除不同光谱设备之间采样分辨率的差异。其次,全球矿物光谱库包含1 648类矿物的5 668个光谱样本被送入生成对抗网络进行训练并产生15 000个扩增样本,从而缓解了数据稀缺性对模型分类性能的制约。此外,一种新的多尺度深度卷积网络被用于同步提取拉曼光谱的宽峰与窄峰特征,从而增强复杂光谱的表征能力。实验中将所提出的模型与k-近邻(k-NN)、支持向量机(SVM)和随机森林(RF)等几类经典机器学习模型对未知矿物的识别性能进行对比。结果表明,所提出的多尺度卷积神经网络结合光谱样本生成的分类模型对未知矿物拉曼光谱的判别准确率远超其他传统机器学习模型,其top-1和top-3的准确率值分别为93.26%和98.94%。使用所提出的模型结合便携式拉曼光谱系统对50类未知天然矿石样本进行了识别,其准确率达到100%,单个样本的识别时间仅为1~2 min,体现了该方法快速、精确和无需取样制样的优势。
The rapid identification of natural unknown minerals in the field is limited by three challenges:differences in the resolution of different spectral devices,weak model generalization ability due to insufficient sample size,and limited ability to extract high-dimensional complex spectral features. To address these three challenges,this paper designs and implements a Raman spectroscopy classification model that combines a multi-scale convolutional neural network with spectral sample generation. This model is integrated with a portable Raman spectrometer to enable rapid identification of unknown minerals in the field. First,a cubic spline curve fitting algorithm was used to match the dimensions of the spectra collected by different devices,thereby eliminating differences in sampling resolution between different spectral devices. Second,5 668 spectral samples of 1 648 mineral types in the global mineral spectral database were fed into a generative adversarial network for training,producing 15 000 augmented samples to alleviate the constraints of data scarcity on model classification performance. Finally,a new multi-scale deep convolutional network was used to synchronously extract the broad and narrow peak features of Raman spectra,thereby enhancing the characterization capability of complex spectra. In addition,the model proposed in this paper was compared with several classic machine learning models,such as k-nearest neighbor(k-NN),support vector machine(SVM),and random forest(RF),to evaluate their performance in identifying unknown minerals. The experimental results demonstrate that the proposed multi-scale convolutional neural network combined with spectral sample generation achieves significantly higher accuracy in classifying Raman spectra of unknown minerals compared to other traditional machine learning models,with top-1 and top-3 accuracy rates of 93.26% and 98.94%,respectively. The proposed model was applied to identify 50 types of unknown natural mineral samples using a portable Raman spectroscopy system,achieving an accuracy rate of 100%. The identification time for a single sample was only 1-2 min,demonstrating the advantages of the method proposed in this paper,which includes rapid,accurate,and sample-free analysis.
Ostrooumov M , Hernández-Bernal M . Spectrochim. Acta A , 2011 , 83 : 437 - 443 .
Pownceby M I , MacRae C M , Wilson N C . Miner. Eng. , 2007 , 20 : 444 - 451 .
Lewandowski B , Said B , Ulbricht M , Krekel G . Miner. Eng. , 2019 , 135 : 129 - 138 .
Sharma S K , Lucey P G , Ghosh M , Hugh W , Hubble H . Spectrochim . Acta A , 2003 , 59 : 2391 - 2407 .
Luo S Y , Chen D P , Chen B S , Quan X W , Ke S Y . J. Instrum. Anal. (罗松英,陈东平,陈碧珊,全晓文,柯思茵. 分析测试学报), 2019 , 38 ( 7 ): 823 - 829 .
Kim J J , Ling F T , Plattenberger D A , Clarens A F , Peters C A . Appl. Geochem. , 2022 , 136 : 105162 .
Chen Z Y , Feng K , Chen Z B , Zou S X , Shen J X , Li H L . Opt. Commun. , 2022 , 525 : 128830 .
Cai Y Y , Xu D G , Shi H . Spectrochim. Acta A , 2022 , 267 : 120607 .
Zhou B W , Zhu L L , Zhu L , Zhao S L , Li R S , Liu X F , Liu J H , Qi J , Yu B Y . J. Instrum. Anal. (周炳文,朱丽丽,朱林,赵爽利,李任时,刘秀峰,刘吉华,戚进,余伯阳. 分析测试学报), 2021 , 40 ( 1 ): 106 - 111 .
Li D X , Zhu Y Q , Mehmood A , Liu Y T , Qin X J , Dong Q L . Talanta , 2025 , 285 : 127268 .
Xiao L , Liu J X , Hua M Z , Lu X N . Food Chem. , 2025 , 463 : 141289 .
Zamani P , Moradi M R , Alipour D , Ghafouri-Kesbi F . Small Ruminant Res. , 2016 , 145 : 115 - 122 .
Omidvar N , Hosseini S M , Maddah-Ali M A . Neurocomputing , 2024 , 599 : 128020 .
Deabes W , Abdel-Hakim A E . Flow Meas. Instrum. , 2024 , 96 : 102566 .
Liu T Y , Chen J , Kong L L , Li X , Chen X F . Food Biosci. , 2024 , 57 : 103465 .
Kong Q Q , Ding X Q , Gong H L , Li Z R , Tang X H , Yu C X . J. Instrum. Anal. (孔清清,丁香乾,宫会丽,李忠任,唐兴宏,于春霞. 分析测试学报), 2017 , 36 ( 10 ): 1203 - 1207 .
Chai M D , Hasi W , Ming X Y , Han S Q , Fang G Q . J. Food Compos. Anal. , 2024 , 136 : 106793 .
Cai Y Y , Yang C H , Xu D G , Gui W H . Anal. Methods , 2018 , 10 : 3525 - 3533 .
0
浏览量
35
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构