北京低碳清洁能源研究院,北京 102211
陈静允,硕士,高级工程师,研究方向:XPS研究,E-mail:jingyun.chen.a@chnenergy.com.cn
收稿:2024-11-30,
修回:2025-02-14,
录用:2025-03-17,
纸质出版:2025-11-15
移动端阅览
冯波,陈静允,程萌.原位X射线衍射和X射线光电子能谱研究Fe2O3的还原过程[J].分析测试学报,2025,44(11):2408-2413.
FENG Bo,CHEN Jing-yun,CHENG Meng.Study of Reduction Process of Fe2O3 Using In Situ X-ray Diffraction and X-ray Photoelectron Spectroscopy[J].Journal of Instrumental Analysis,2025,44(11):2408-2413.
冯波,陈静允,程萌.原位X射线衍射和X射线光电子能谱研究Fe2O3的还原过程[J].分析测试学报,2025,44(11):2408-2413. DOI: 10.12452/j.fxcsxb.241130564.
FENG Bo,CHEN Jing-yun,CHENG Meng.Study of Reduction Process of Fe2O3 Using In Situ X-ray Diffraction and X-ray Photoelectron Spectroscopy[J].Journal of Instrumental Analysis,2025,44(11):2408-2413. DOI: 10.12452/j.fxcsxb.241130564.
为了研究不同气氛对费托Fe基催化剂还原过程和活性相碳化铁晶相的影响,在常压CO、CO+H
2
和先H
2
后CO 3种气氛、27
5 ℃条件下,利用原位XRD表征了Fe
2
O
3
形成碳化铁的晶型变化过程。结果表明,Fe
2
O
3
样品在3种气氛中均主要转化为Fe
5
C
2
相,但晶粒尺寸有所不同,分别为12.1、16.9、20.6 nm。同时,(112)、(021)和(510)晶面对应的衍射峰由完全重叠变为基本分离,产物中始终有少量Fe
3
O
4
物相残留。为进一步探究Fe
3
O
4
不能被完全还原的原因,利用原位XPS表征了Fe
2
O
3
在H
2
气氛中还原10 h的样品。分析表明,样品主体为单质Fe相,但Fe
3
O
4
相仍存在于单质Fe颗粒的表面。综合XRD和XPS的分析结果,得到以下结论:在Fe
2
O
3
的还原过程中,增加H
2
/CO比例可以促进碳化铁晶粒的生长;颗粒表面始终有少量Fe
3
O
4
残留,这可能是由于存在Fe
3
O
4
-Fe(Fe
5
C
2
)转化的平衡反应。这些研究结果对于理解不同气氛对费托Fe基催化剂还原过程和活性相碳化铁晶相的影响具有重要意义,同时也为优化催化剂的制备条件及其催化性能提高提供了有益的参考。
In situ X-ray diffraction(in situ XRD) was used to analyze the effects of different gases on the reducing process of iron-based F-T catalysts and the growth of iron carbide in CO,CO+H
2
,and H
2
followed by CO at 275 ℃. The Fe
2
O
3
precursor mainly transforms into Fe
5
C
2
phase in three gases with grain sizes of 12.1,16.9 and 20.6 nm. The diffraction peaks corresponding to the(021),(510) and(112) crystal surfaces change from complete overlap to separation. And there is always a small amount of residual Fe
3
O
4
phase in the product. Fe
2
O
3
was reduced in H
2
for 10 hours. The reduction sample was characterized using in situ X-ray photoelectron spectroscopy(in situ XPS). The results show that the sample is mainly consist of Fe phase and Fe
3
O
4
phase exists on the surface of Fe phase. Based on the analysis results of XRD and XPS,iron carbide grains grow faster in higher H
2
/CO ratio gas during the Fe
2
O
3
reduction process. There is always a small amount of residual Fe
3
O
4
phase on the surface of the particles,which may be caused by the equilibrium reaction of Fe
3
O
4
-Fe(Fe
5
C
2
) conversion. These results are of great significance for understanding the effects of different gases on the reduction process of Fe-based catalysts and the crystal phase of active phase iron carbide,and also provide a useful reference for optimizing the preparation conditions of catalysts and improving their catalytic performance.
Song Q Q , Hou Y X , Mu Y J , Wang C J , Fu K M . Acta Petrolei Sin . (Petroleum Processing Sect.)(宋倩倩 ,侯雨璇,慕彦君,王春娇,付凯妹.石油学报(石油加工)), 2025 , 41 ( 1 ): 297 - 306 .
Pham T H , Cao J B , Song N , Cao Y Q , Chen B X , Qian G , Zhou X G , Chen D , Duan X Z . Green Energy Environ. , 2022 , 7 ( 3 ): 449 - 456 .
Emiel D S , Fabrizio C , Andrew M B , Olga V S , Wouter V B , Philippe S , Bert M W . J. Am. Chem. Soc. , 2010 , 132 ( 42 ): 14928 - 14941 .
Chang Q , Zhang C H , Liu C W , Wei Y X , Cheruvathur A V , Dugulan A L , Niemantsverdriet J W , Liu X W , He Y R , Qing M , Zheng L R , Yun Y F , Yang Y , Li Y W . ACS Catal. , 2018 , 8 ( 4 ): 3304 - 3316 .
Liu Y J , Zhang X L , Li L T , Liu X C , Lei T Y , Bai J W , Guo W P , Zhou Y W , Liu X W , Teng B T , Wen X D . Artif. Intell. Chem. , 2024 , 2 ( 1 ): 100062 - 100071 .
Zhang M H , Ren J , Yu Y Z . ACS Catal. , 2020 , 10 ( 1 ): 689 - 701 .
Liu Q Y , Shang C , Liu Z P . J. Am. Chem. Soc. , 2021 , 143 ( 29 ): 11109 - 11120 .
Zhang C , Cao C X , Zhang Y L , Liu X L , Xu J , Zhu M H , Tu W F , Han Y F . ACS Catal. , 2021 , 11 ( 4 ): 2121 - 2133 .
Liang J , Wang X Y , Gao X H , Tian J M , Duan B , Zhang W , Jiang Y J , Reubroycharoen P , Zhang J L , Zhao T S . J . Fuel Chem. Technol . 梁洁,王欣宇,高新华,田菊梅,段斌,张伟,江永军,ReubroycharoenP,张建利,赵天生. 燃料化学学报), 2022 , 50 ( 12 ): 1573 - 1580 .
Alayat A M , Mcllroy D , Mcdonald A . Fuel Process. Technol. , 2018 , 169 : 132 - 141 .
Han X , Qing M , Wang H , Yu X , Suo H Y , Shen X F , Yang Y , Li Y W . J. Fuel Chem. Technol. , 2023 , 51 ( 2 ): 155 - 164 .
Chen J J , Zhao Q , Han X X , Lv J , Li Z H , Huang S Y , Ma X B . Energy Fuels , 2022 , 36 ( 10 ): 5384 - 5392 .
Ramutsindela F K , Okoye-Chine C G , Mbuya C O L , Mubenesha S , Gorimbo J , Okonye L U , Liu X Y , Hildebrandt D . J. Taiwan Inst. Chem. Eng. , 2022 , 131 : 104163 - 104169 .
Gorimboa J , Lu X J , Liu X Y , Hildebrandt D , Glasser D . Appl. Catal. A , 2017 , 534 : 1 - 11 .
Cheng S F , Chang H Y , Li J F , Shi Y L . Pet . Process. Petrochem. (程时富,常鸿雁,李骏峰,石玉林. 石油炼制与化工), 2013 , 44 ( 6 ): 53 - 58 .
Feng B , Wu P , Li Y L . Nat . Gas Chem. Ind. (冯波,武鹏,李永龙. 天然气化工), 2021 , 46 ( 1 ): 66 - 68 .
Shroff M D , Kalakkad D S , Coulter K E , Kohler S D , Harrington M S , Jackson N B , Sault A G , Datye A K . J. Catal. , 1995 , 156 ( 2 ): 185 - 207 .
Ma Z X , Zhou C L , Wang D M , Wang Y X , He W X , Tan Y S , Liu Q S . J. Catal. , 2019 , 378 : 209 - 219 .
Yamashita T , Hayes P . Appl. Surf. Sci. , 2008 , 254 ( 8 ): 2441 - 2449 .
Biesinger M C , Paynec B P , Grosvenor A P , Lau L W M , Gerson A R , Smart R S C . Appl. Surf. Sci. , 2011 , 257 ( 7 ): 2717 - 2730 .
Chen J Y , Feng B , Zhou J L , Jiang F G , Ma L G . Chin . J. Inorg. Anal. Chem. (陈静允,冯波,周佳丽,蒋复国,马琳鸽. 中国无机分析化学), 2025 , 15 ( 1 ): 143 - 149 .
Wang P , Chen W , Chiang F K , Dugulan A , Song Y J , Pestman R , Zhang K , Yao J S , Feng B , Miao P , Xu W , Hensen E . Sci. Adv. , 2018 , 4 ( 10 ): eaau2947 .
Wang P , Chiang F K , Chai J C , Dugulan A , Dong J , Chen W , Broos R , Feng B , Song Y J , Lv Y J , Lin Q , Wang R M , Filot I , Men Z W , Hensen E . Nature , 2024 , 635 : 102 - 120 .
0
浏览量
97
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
