浏览全部资源
扫码关注微信
1.唐山市农业科学研究院,河北 唐山 063000
2.中国农业科学院作物科学研究所,北京 100081
3.唐山市古冶区市场监督管理局,河北 唐山 063100
4.河北农业大学 动物科技学院,河北 保定 071001
陆晴,硕士,副研究员,研究方向:小麦种子无损检测,E-mail:auh_30@163.com
收稿:2024-11-19,
修回:2025-02-12,
录用:2025-02-13,
纸质出版:2025-10-15
移动端阅览
宋茂兴,马宏亮,吴志会,李彤,杨梦颖,黄慧娜,吴彭,杨东旭,许大川,陆晴.基于SWG和LSG堆叠模型机器学习算法的小麦种子蛋白质含量检测的研究[J].分析测试学报,2025,44(10):2087-2094.
SONG Mao-xing,MA Hong-liang,WU Zhi-hui,LI Tong,YANG Meng-ying,HUANG Hui-na,WU Peng,YANG Dong-xu,XU Da-chuan,LU Qing.Study on the Detection of Protein Content in Wheat Seeds Based on SWG and LSG Stacked Model Machine Learning Algorithms[J].Journal of Instrumental Analysis,2025,44(10):2087-2094.
宋茂兴,马宏亮,吴志会,李彤,杨梦颖,黄慧娜,吴彭,杨东旭,许大川,陆晴.基于SWG和LSG堆叠模型机器学习算法的小麦种子蛋白质含量检测的研究[J].分析测试学报,2025,44(10):2087-2094. DOI: 10.12452/j.fxcsxb.241119543.
SONG Mao-xing,MA Hong-liang,WU Zhi-hui,LI Tong,YANG Meng-ying,HUANG Hui-na,WU Peng,YANG Dong-xu,XU Da-chuan,LU Qing.Study on the Detection of Protein Content in Wheat Seeds Based on SWG and LSG Stacked Model Machine Learning Algorithms[J].Journal of Instrumental Analysis,2025,44(10):2087-2094. DOI: 10.12452/j.fxcsxb.241119543.
开发了一种快速无损准确率高的小麦种子蛋白质含量检测方法。采用近红外光谱(NIRS)技术结合堆叠模型的机器学习方法,对包含248个小麦种子的近红外光谱数据进行分析,并比较了滑动窗口分组(SWG)和分层抽样分组(LSG)两种光谱波段分组方法的效果。在基本模型中,偏最小二乘(PLS)展现出最低的预测均方根误差(RMSEP)和最高的决定系数(
R
²),分别为0.212 0和0.989 9。实施堆叠模型后,不同算法的性能均获得显著提升。LSG与线性回归的结合使得RMSEP降低至0.199 0,
R
²提高至0.991 1,为最优模型。结果表明与LSG集成的堆叠模型机器学习算法为小麦种子蛋白质含量预测提供了一种更准确的算法。
In order to develop a fast,non-destructive,and highly accurate method for detecting the protein content in wheat seeds,this study employs near infrared spectroscopy(NIRS) technology combined with machine learning methods using stacked models to analyze the near infrared spectroscopy data of 248 wheat seeds. This paper compares two spectral band grouping method
s:sliding window grouping(SWG) and stratified sampling grouping(LSG). In the basic model,partial least squares(PLS) showed the lowest root mean square error of prediction(RMSEP) and the highest coefficient of determination(
R
²),with values of 0.212 0 and 0.989 9,respectively. After implementing the stacked model,the performance of different algorithms significantly improved. The combination of LSG and linear regression reduced the RMSEP to 0.199 0 and increased the
R
² to 0.991 1,making it the optimal model of this study. This indicates that the stacked model machine learning algorithm integrated with LSG provides a more accurate method for predicting the protein content in wheat seeds.
Grain Production Worldwide by Type 2023 / 24,Statista . https://www.statista.com/statistics/263977/world-grain-production-by-type/ , 2024 .
Xu X B , Zhou L L , Taylor J , Casa R , Fan C Z , Song X Y , Yang G J , Huang W J , Li Z H . Sci. Data , 2024 , 11 : 1025 .
Chu X L . Chemometric Methods in Modern Spectral Analysis . 1st ed . Beijing : Chemical Industry Press(褚小立. 现代光谱分析中的化学计量学方法. 1版. 北京:化学工业出版社) , 2022 : 1 - 6 .
Badaró A T , Tavares J P H E , Blasco J , Aleixos-Borrás N , Barbin D F . Food Control , 2022 , 140 : 109115 .
Pandey P , Srivastava S , Mishra H N . Food Quali. Saf. , 2018 , 2 : 165 - 172 .
Feng L , Zhu S , Liu F , He Y , Bao Y , Zhang C . Plant Methods , 2019 , 15 : 1 - 25 .
Huo X S , Chen P , Dai J W , Wang H P , Liu D , Li J Y , Xu Y P , Chu X L . J. Instrum. Anal. (霍学松,陈瀑,戴嘉伟,王海朋,刘丹,李敬岩,许育鹏,褚小立. 分析测试学报), 2022 , 41 ( 9 ): 1301 - 1313 .
Dai J W , Wang H P , Chen P , Chu X L . Chin. J. Anal. Chem. (戴嘉伟 , 王海朋 , 陈瀑 , 褚小立 . 分析化学) , 2022 ,( 6 ): 839 - 849 .
Chen P , Yang J , Chu X L , Li J Y , Xu Y P , Liu D . Chin. J. Anal. Chem . 陈瀑 , 杨健 , 褚小立 , 李敬岩 , 许育鹏 , 刘丹 . 分析化学) , 2024 ,( 9 ): 1213 - 1224 .
Levasseur-Garcia C , Castellanet P , Henry C , Florin C , Laporte M , Mirleau-Thebaud V , Plut S , Calmon A . Sustainability , 2024 , 16 : 737 .
Liu F , Yang R , Chen R , Guindo M L , He Y , Zhou J , Lu X , Chen M , Yang Y , Kong W . J. Adv. Res. , 2024 , 63 : 1 - 16 .
Wang Y , Zhang Y , Zhan X , He Y , Yang Y , Cheng L . Neurocomputing , 2024 , 597 : 128103 .
Yang H , Kim N , Lee H , Kim M , Sang W , Yang C , Mo C . Front. Plant Sci. , 2024 , 15 : 1 - 14 .
Amanah H Z , Wakholi C , Perez M , Faqeerzada M A , Tunny S S , Masithoh R E , Choung M , Kim K , Lee W , Cho B . Appl. Sci. , 2021 , 11 : 4841 .
Ekramirad N , Doyle L , Loeb J , Santra D , Adedeji A A . Foods , 2024 , 13 : 1330 .
Jiang G L . Agronomy , 2020 , 10 : 77 .
Shi Y Y , Li J Y , Chu X L . Chin. J. Anal. Chem. , 2019 , 47 ( 4 ): 479 - 487 .
Zhu X L , Chen J , Gao F , Chen X H , Masek J G . Remote Sens. Environ. , 2010 , 114 : 2610 - 2623 .
Li W , Peng Y , Zhang M , Ding L , Hu H , Shen L . arXiv ,2023:2309 . 15698 .
Ni W D , Brown S D , Man R . J. Chemom. , 2009 , 23 : 505 - 517 .
Ni W D , Man R L . Chin. J. Anal. Chem. (倪网东,满瑞林. 分析化学), 2010 , 38 ( 3 ): 367 - 371 .
Ni W D . Novel Approaches to Mutivariate Calibration and Classification and Calibration Transfer . Changsha : Central South University (倪网东. 新型多元校正、校正转换和多元分类分析方法研究. 长沙:中南大学), 2010 .
Zhang W , Kasun L C , Wang Q J , Zheng Y , Lin Z . Sensors , 2022 , 22 : 9764 .
Pavlyshenko B M . 2016 IEEE International Conference on Big Data , Washington , DC , USA , 2016 : 2046 - 2050 .
Pavlyshenko B M . 2016 IEEE First International Conference on Data Stream Mining & Processing , Lviv ,Ukraine, 2016 : 377 - 381 .
Yamada M , Thiesen L V , Filho F H I , Yamamoto P T . Agriculture , 2024 , 14 : 1573 .
Naresh M , Nagaraju V S , Kollem S , Kumar J , Peddakrishna S . Heliyon , 2024 , 10 : e28720 .
Chang H T , Zhu L Q , Lou X P , Meng X C , Guo Y K , Wang Z Y . J. Anal. Methods Chem. , 2016 , 2016 : 1 - 8 .
Wold S , Trygg J , Berglund A , Antti H . Chemom. Intell. Lab. Syst. , 2001 , 58 : 131 - 150 .
Shetty N , Gislum R . Field Crops Res. , 2011 , 120 ( 1 ): 31 - 37 .
Zhang F , O'donnell L J . Support Vector Regression : Amsterdam . Elsevier , 2020 : 45 - 48 .
Xu S , Lu B , Baldea M , Edgar T F , Nixon M . J. Process Control , 2018 , 67 : 83 - 93 .
Thissen U , Pepers M , Üstün B , Melssen W , Buydens L . Chemom. Intell. Lab. Syst. , 2004 , 73 ( 2 ): 169 - 179 .
Pavlyshenko B M . 2018 IEEE Second International Conference on Data Stream Mining & Processing , Lviv ,Ukraine, 2018 : 255 - 258 .
Pavlyshenko B M . 2020 IEEE Third International Conference on Data Stream Mining & Processing , Lviv ,Ukraine, 2020 : 305 - 309 .
0
浏览量
60
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构