浏览全部资源
扫码关注微信
1.陕西省环境介质痕量污染物监测预警重点实验室,陕西 西安 710054
2.陕西省环境监测中心站,陕西 西安 710054
3.西安石油大学 化学化工学院,陕西 西安 710065
4.西北大学 化学与材料科学学院, 陕西 西安 710127
李茂刚,博士,讲师,研究方向:化学计量学、光谱分析技术在环境及能源化学的应用,E-mail:lmglmg1995@163.com
李华,博士,教授,研究方向:分析化学与过程分析、含能材料、绿色能源化学,E-mail:huali@nwu.edu.cn
收稿日期:2024-11-18,
修回日期:2024-12-18,
录用日期:2024-12-23,
纸质出版日期:2025-06-15
移动端阅览
杏艳,李茂刚,念娟妮,王婷,周奎,张天龙,李华.激光诱导击穿光谱结合机器学习的土壤沉积物重金属元素定量分析方法研究[J].分析测试学报,2025,44(06):1115-1122.
XING Yan,LI Mao-gang,NIAN Juan-ni,WANG Ting,ZHOU Kui,ZHANG Tian-long,LI Hua.Research on Quantitative Analysis Method of Heavy Metal Elements in Soil Sediments Based on Laser Induced Breakdown Spectroscopy Combined with Machine Learning[J].Journal of Instrumental Analysis,2025,44(06):1115-1122.
杏艳,李茂刚,念娟妮,王婷,周奎,张天龙,李华.激光诱导击穿光谱结合机器学习的土壤沉积物重金属元素定量分析方法研究[J].分析测试学报,2025,44(06):1115-1122. DOI: 10.12452/j.fxcsxb.241118533.
XING Yan,LI Mao-gang,NIAN Juan-ni,WANG Ting,ZHOU Kui,ZHANG Tian-long,LI Hua.Research on Quantitative Analysis Method of Heavy Metal Elements in Soil Sediments Based on Laser Induced Breakdown Spectroscopy Combined with Machine Learning[J].Journal of Instrumental Analysis,2025,44(06):1115-1122. DOI: 10.12452/j.fxcsxb.241118533.
土壤沉积物中的重金属污染问题日益凸显,开发现场快速检测技术已成为确保污染监测有效性及推进环境治理不可或缺的手段。基于此,该研究提出了一种基于激光诱导击穿光谱技术(LIBS)结合机器学习算法的土壤沉积物重金属元素定量分析方法。首先,基于搭建的LIBS装置采集了土壤沉积物样本的光谱,探究了不同光谱预处理方法对光谱数据的预处理性能。紧接着基于变量重要性测量(VIM)对预处理后的光谱数据进行特征变量筛选。借助交叉验证对预处理方法、变量重要性阈值等参数进行了优化。基于优化的输入变量建立了土壤沉积物样本中3种重金属元素(Pb、Cu和Zn)的定量分析模型,并与其他校正模型的性能进行了比对。结果表明,该研究提出的VIM-RF校正模型表现出最佳的预测性能,对于Pb其
R
2
p
为0.993 0,RMSE
P
为0.029 8 mg/kg,对于Cu其
R
2
p
为0.981 0,RMSE
P
为0.112 7 mg/kg,对于Zn其
R
2
p
为0.992 0,RMSE
P
为0.166 2 mg/kg。由此可见,该文建立的方法有望为土壤沉积物环境重金属污染快速筛查及治理提供一定的理论参考依据。
The issue of heavy metal contamination in soil sediment is becoming increasingly prevalent. The development of on-site rapid detection methods for heavy metal elements represents the only viable approach to achieving effective pollution monitoring and environmental governance. Accordingly,this study proposed a quantitative analysis method for heavy metal elements in soil sediments based on laser-induced breakdown spectroscopy combined with machine learning algorithms. Firstly,the spectral collection of soil sediment samples was completed using
the constructed LIBS device,and the efficacy of various spectral preprocessing techniques on spectral data preprocessing was investigated. Subsequently,feature variable selection was conducted on the preprocessed spectral data,based on the measurement of variable importance. The preprocessing method,variable importance threshold,and other parameters were optimized using cross-validation. A quantitative analysis model for three heavy metal elements(Pb,Cu and Zn) in soil sediment samples was constructed based on optimized input variables. To further validate the performance of the model,a comparison was conducted with the performance of other calibration models. The results indicate that the VIM-RF calibration model proposed in this study exhibits the best predictive performance,with a
R
2
p
of 0.993 0 and a RMSE
p
of 0.029 8 mg/kg for Pb,a
R
2
p
of 0.981 0 and a RMSE
p
of 0.112 7 mg/kg for Cu,and a
R
2
p
of 0.992 0 and a RMSE
p
of 0.166 2 mg/kg for Zn. It can be seen that the method established by this research institute is expected to provide a theoretical reference for the rapid screening and treatment of heavy metal pollution in soil sediment environments.
Liu Q Q , Ma T , Sheng Y Q , Wang W J , Jiang M , Liu X Z , Hu N N . Environ. Monit. Assess. , 2023 , 195 : 430 .
Wang J W , Gao C Y , Liu X L , Tan G M . J. Soil. Sediment , 2022 , 22 : 238 - 255 .
Wang M H , Liu X Y , Yang B , Fei Y , Yu J J , An R , Duan L J . Environ. Sci. Pollut. R. , 2021 , 28 : 29118 - 29130 .
Diwa R R , Deocaris C C , Orbecido A H , Beltran A B , Vallar E A , Galvez M C D , Belo L P . Soil Sediment Contam. , 2023 , 32 : 1033 - 1052 .
Ren J , Yang Z H , Zhao Y R , Yu K Q . Opt. Express , 2022 , 30 : 37711 - 37726 .
Xie F Y , Yu M C , Yuan Q K , Meng Y , Qie Y K , Shang Z M , Luan F B , Zhang D L . J. Hazard. Mater. , 2022 , 436 : 129309 .
Harmon R S , Russo R E , Hark R R . Spectrochim. Acta B , 2013 , 87 : 11 - 26 .
Wang T , Jiao L , Yan C H , He Y , Li M G , Zhang T L , Li H . Chemometr. Intell. Lab. , 2019 , 194 : 103854 .
Wen X , Hu Z , Nie J , Gao Z , Zhang D , Guo L , Ma S , Dong D . J. Anal. Atom. Spectrom. , 2023 , 38 : 1108 - 1115 .
Liu J , Gan L P , Sun T , Liu M H . J. Instrum. Anal. (刘津,甘兰萍,孙通,刘木华. 分析测试学报), 2017 , 36 ( 9 ): 1099 - 1103 .
Li M G , Fu H , Du Y , Huang X , Zhang T L , Tang H S , Li H . J. Anal. Atom. Spectrom. , 2022 , 37 : 1099 - 1108 .
Zeng Q D , Guo L B , Li X Y , Shen M , Zhu Y N , Li J M , Yang X Y , Li K H , Duan J , Zeng X Y , Lu Y F . J. Anal. Atom. Spectrom. , 2016 , 31 : 767 - 772 .
Garcia-Comendador J , Martinez-Carreras N , Fortesa J , Company J , Borras A , Estrany J . J. Environ. Manage. , 2021 , 299 : 113593 .
Diaz D , Molina A , Hahn D W . Appl. Spectrosc. , 2020 , 74 : 42 - 54 .
Ruan F Q , Hou L , Zhang T L , Li H . Analyst , 2021 , 146 : 1023 - 1031 .
Yan C H , Liang J , Zhao M J , Zhang X , Zhang T L , Li H . Anal. Chim. Acta , 2019 , 1080 : 35 - 42 .
Yan C H , Zhang T L , Sun Y Q , Tang H S , Li H . Spectrochim. Acta B , 2019 , 154 : 75 - 81 .
Li M G , Liang J , Yan C H , Tang H S , Zhang T L , Li H . Chin. J. Anal. Chem. (李茂刚,梁晶,闫春华,汤宏胜,张天龙,李华. 分析化学), 2021 , 49 ( 8 ): 1410 - 1418 .
Liu K , Tian D , Xu H Y , Wang H X , Yang G . Anal. Methods , 2019 , 11 : 4769 - 4774 .
Ding S , Shen T R , Zhang Y F , Du H Z , Wu Y , Zou X Y . J. Instrum. Anal. (丁莎,申涛榕,张艳飞,杜欢哲,吴榆,邹小勇. 分析测试学报), 2023 , 42 ( 11 ): 1510 - 1516 .
0
浏览量
29
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构