浏览全部资源
扫码关注微信
1.大连交通大学 材料科学与工程学院,辽宁 大连 116028
2.中国科学院大连化学物理研究所,辽宁 大连 116023
田颖,博士,教授,研究方向:水处理技术与材料研究,E-mail:greenhusk@126.com
王卫国,博士,高级工程师,研究方向:质谱技术研究与应用,E-mail:wwg1978@dicp.ac.cn
收稿日期:2024-10-23,
修回日期:2024-11-24,
录用日期:2024-12-18,
纸质出版日期:2025-07-15
移动端阅览
李杨,张红燕,田颖,王卫国.硫醇配体保护金纳米团簇的制备和质谱表征研究[J].分析测试学报,2025,44(07):1307-1312.
LI Yang,ZHANG Hong-yan,TIAN Ying,WANG Wei-guo.Preparation and Mass Spectrometric Characterization of Thiol-ligand-protected Gold Nanoclusters[J].Journal of Instrumental Analysis,2025,44(07):1307-1312.
李杨,张红燕,田颖,王卫国.硫醇配体保护金纳米团簇的制备和质谱表征研究[J].分析测试学报,2025,44(07):1307-1312. DOI: 10.12452/j.fxcsxb.241023477.
LI Yang,ZHANG Hong-yan,TIAN Ying,WANG Wei-guo.Preparation and Mass Spectrometric Characterization of Thiol-ligand-protected Gold Nanoclusters[J].Journal of Instrumental Analysis,2025,44(07):1307-1312. DOI: 10.12452/j.fxcsxb.241023477.
纳米团簇因具有独特的原子构型、电子结构及新颖的光学、电学和催化性能,被广泛应用于催化、发光材料、探测设备、生物以及制药等领域。对纳米团簇的质谱表征可以获得纳米团簇精准质量数信息,为结构理论模型的建立提供重要信息。该文利用三重四极杆质谱、激光解吸电离质谱对油相法制备金纳米团簇的过程产物和最终产物进行了质谱表征。首先,利用三重四极杆质谱分别对各反应阶段的离子进行质谱表征,并对中性丢失模式获得的母体离子及其碎片离子进行了归属。其次,利用激光解吸电离质谱对纳米团簇最终产物进行表征,考察了激光能量和基质对电离产物的影响。结果显示,当采用2-[3-(4-叔丁基苯基)-2-甲基-2-亚丙烯基]丙二腈作为辅助基质时,大质量数团簇的信号强度得到显著提升。在2 500~5 300质量范围内观测到一系列金纳米团簇离子,质量数分别为2 817.7、3 014.7、3 211.7、3 441.8、3 637.8、3 866.7、4 063.8、4 260.7、4 489.7、4 688.8、4 883.8、5 112.9、5 309.9。这些相邻团簇离子之间相差1个Au原子或AuS结构单元。另外,观察到最大质量数的金团簇峰位于质量数6 945和8 549位置,分别对应于 Au
21
(C
12
H
25
S)
14
和Au
25
(C
12
H
25
S)
18
。该研究结果对纳米团簇的合成及团簇结构模型的建立具有重要的指导意义和参考价值。
Nanoclusters possess unique atomic configurations,electronic structures,and novel optical,electrical,and catalytic properties,which make them widely applicable in fields such as catalysis,luminescent materials,detection devices,biology,and pharmaceuticals. Mass spectrometric characterization of nanoclusters can obtain precise mass number information of the nanoclusters,providing important informat
ion for the establishment of structural theoretical models. This paper introduced the characterization of the process products and final products during oil-phase preparation of gold nanoclusters using triple quadrupole mass spectrometry and laser desorption/ionization mass spectrometry. Firstly,the ions at each reaction stage were characterized by triple quadrupole mass spectrometry,and the parent ions and their fragment ions obtained by neutral loss mode were assigned. Secondly,the final products of the nanoclusters were characterized using laser desorption ionization mass spectrometry,and the effects of laser energy and matrix on the ionized products were investigated. The results showed that when 2-[3-(4-tert-butylphenyl)-2-methyl-2-propenyl] malononitrile was used as the auxiliary matrix,the signal intensity of the large number of clusters was significantly improved. A series of ions of gold nanoclusters were observed in the mass range of 2 500 to 5 300,with mass numbers of 2 817.7,3 014.7,3 211.7,3 441.8,3 637.8,3 866.7,4 063.8,4 260.7,4 489.7,4 688.8,4 883.8,5 112.9 and 5 309.9,respectively. These adjacent ions differed by one Au atom or AuS structural unit. Additionally,the peak of the gold cluster with the highest mass number was observed at positions 6 945 and 8 549,corresponding to Au
21
(C
12
H
25
S)
14
and Au
25
(C
12
H
25
S)
18
,respectively. The research results of this paper have important guiding significance and reference value for the synthesis of nanoclusters and the establishment of cluster structure models.
Chun J , Zhang K , Zhang T , Liang W X , Song Y M , Guo P R . J. Instrum. Anal. (淳杰,张凯,张婷,梁维新,宋玉梅,郭鹏然. 分析测试学报), 2024 , 43 ( 8 ): 1144 - 1153 .
Shi W Q , Zeng L L , He R L , Han X S , Guan Z J , Zhou M , Wang Q M . Science , 2024 , 383 ( 6680 ): 326 - 330 .
Chakraborty I , Pradeep T . Chem. Rev. , 2017 , 117 ( 12 ): 8208 - 8271 .
Higaki T , Li Q , Zhou M , Zhao S , Li Y W , Li S T , Jin R C . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2764 - 2773 .
Nieto-Ortega B , Burgi T . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2811 - 2819 .
Tang Q , Hu G X , Fung V , Jiang D E . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2793 - 2802 .
Wang S X , Li Q , Kang X , Zhu M Z . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2784 - 2792 .
Gan Z B , Xia N , Woo Z K . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2774 - 2783 .
Talik E , Pajaczkowska A , Guzik A , Zajdel P , Kusz J , Klos A , Szysiak A . Mater. Sci. Eng. B , 2014 , 182 : 74 - 80 .
Bellachioma G , Ciancaleoni G , Zuccaccia C , Zuccaccia D , Macchioni A . Coord. Chem. Rev. , 2008 , 252 ( 21/22 ): 2224 - 2238 .
Lei Z , Guan Z J , Pei X L , Yuan S F , Wan X K , Zhang J Y , Wang Q M . Chem. Eur. J. , 2016 , 22 ( 32 ): 11156 - 11160 .
Mustalahti S , Myllyperkio P , Lahtinen T , Salorinne K , Malola S , Koivisto J , Hakkinen H , Pettersson M . J. Phys. Chem. C , 2014 , 118 ( 31 ): 18233 - 18239 .
Savaloni H , Savari R . Mater. Chem. Phys. , 2018 , 214 : 402 - 420 .
Bromley S T , Sankar G , Catlow C R A , Maschmeyer T , Johnson B F G , Thomas J M . Chem. Phys. Lett. , 2001 , 340 ( 5/6 ): 524 - 530 .
Knoppe S , Vogt P . Anal. Chem. , 2019 , 91 ( 2 ): 1603 - 1609 .
Balasubramanian R , Guo R , Mills A J , Murray R W . J. Am. Chem. Soc. , 2005 , 127 ( 22 ): 8126 - 8132 .
Schaaff T G , Whetten R L . J. Phys. Chem. B , 2000 , 104 ( 12 ): 2630 - 2641 .
Ji J W , Wang G , Wang T W , You X Z , Xu X X . Nanoscale , 2014 , 6 ( 15 ): 9185 - 9191 .
Dass A , Stevenson A , Dubay G R , Tracy J B , Murray R W . J. Am. Chem. Soc. , 2008 , 130 ( 18 ): 5940 - 5946 .
Fields - Zinna C A , Sampson J S , Crowe M C , Tracy J B , Parker J F , deNey A M , Muddiman D C , Murray R W . J. Am. Chem. Soc. , 2009 , 131 ( 38 ): 13844 - 13851 .
Ghosh A , Udayabhaskararao T , Pradeep T . J. Phys. Chem. Lett. , 2012 , 3 ( 15 ): 1997 - 2002 .
Chen T K , Yao Q F , Nasaruddin R R , Xie J P . Angew. Chem. Int. Ed. , 2019 , 58 ( 35 ): 11967 - 11977 .
Hesari M , Ding Z F . J. Am. Chem. Soc. , 2021 , 143 ( 46 ): 19474 - 19485 .
Baksi A , Ghosh A , Mudedla S K , Chakraborty P , Bhat S , Mondal B , Krishnadas K R , Subramanian V , Pradeep T . J. Phys. Chem. C , 2017 , 121 ( 24 ): 13421 - 13427 .
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构