浏览全部资源
扫码关注微信
1.中国计量大学 生命科学学院/浙江省生物计量及检验检疫技术重点实验室,浙江 杭州 310018
2.浙江方圆检测集团股份有限公司,浙江 杭州 310018
3.浙江省市场监管生物安全重点实验室,浙江 杭州 310018
宋阳,博士,副教授,研究方向:生物检测,E-mail:songyang0416@126.com
申屠旭萍,博士,教授,研究方向:植物保护和生物安全,E-mail:stxp@cjlu.edu.cn
收稿日期:2024-10-09,
修回日期:2024-11-28,
录用日期:2024-12-17,
网络出版日期:2025-04-25,
纸质出版日期:2025-07-15
移动端阅览
占宇华,刘鹏鹏,梁媛媛,俞晓平,宋阳,申屠旭萍.基于表面等离子共振技术捕获法的CYFRA21-1蛋白活性浓度定量方法研究[J].分析测试学报,2025,44(07):1247-1253.
ZHAN Yu-hua,LIU Peng-peng,LIANG Yuan-yuan,YU Xiao-ping,SONG Yang,SHENTU Xu-ping.Quantitative Study of CYFRA21-1 Protein Activity Concentration Based on Surface Plasmon Resonance in a Capture Mode[J].Journal of Instrumental Analysis,2025,44(07):1247-1253.
占宇华,刘鹏鹏,梁媛媛,俞晓平,宋阳,申屠旭萍.基于表面等离子共振技术捕获法的CYFRA21-1蛋白活性浓度定量方法研究[J].分析测试学报,2025,44(07):1247-1253. DOI: 10.12452/j.fxcsxb.241009443.
ZHAN Yu-hua,LIU Peng-peng,LIANG Yuan-yuan,YU Xiao-ping,SONG Yang,SHENTU Xu-ping.Quantitative Study of CYFRA21-1 Protein Activity Concentration Based on Surface Plasmon Resonance in a Capture Mode[J].Journal of Instrumental Analysis,2025,44(07):1247-1253. DOI: 10.12452/j.fxcsxb.241009443.
基于表面等离子体共振(SPR)技术的无标浓度分析(CFCA)方法可以不借助任何标准品,仅利用已知的蛋白质扩散系数和在扩散受限条件下测定蛋白的活性浓度。该研究提出了一种捕获形式下的CFCA方法(CCFCA),用于测定CYFRA21-1蛋白活性浓度。结果表明,CCFCA法的测定值为0.67 mg/mL,日间精密度为4.6%,而CFCA法的测定值为0.7 mg/mL,日间精密度为6.5%。此外,抗体偶联水平一直是限制CFCA使用的关键性因素,若芯片储存方法或活化方法不当,将导致芯片表面偶联抗体水平达不到CFCA方法所要求的克服传质限制要求(CFCA进行拟合方法学要求QC
ratio
>
0.2),导致测定结果不可靠。由于捕获法能够在Protein G蛋白辅助下
使抗体的空间朝向更为合适,使得在低偶联水平下CCFCA法的检测结果仍准确稳定。与经典CFCA方法相比,CCFCA法检测结果可靠,单块芯片通过再生可用于多个抗体-分析物检测,可作为未来测定蛋白质活性浓度的更好选择。
Calibration free concentration analysis based on surface plasmon resonance can be used to determine the active protein concentration without reference to any standard,using only the known protein diffusion coefficient under diffusion-limited conditions. In this study,calibration free concentration analysis in a capture mode was proposed for the detection of CYFRA21-1 protein activity concentration. The results showed that the value of calibration free concentration analysis in a capture mode(CCFCA) was 0.67 mg/mL and the daytime precision was 4.6%,while the value of calibration free concentration analysis(CFCA) was 0.7 mg/mL and the daytime precision was 6.5%. In addition,the antibody coupling level has always been a key factor limiting the use of CFCA. If the chip storage method or activation method is improper,the level of the coupled antibody indicated by the chip will not meet the requirements of the CFCA method to overcome the mass transfer restriction (QC
ratio
>
0.2 required by CFCA fitting methodology),resulting in the unreliable detection results. Since the capture method can more appropriately pose the antibody space with the assistance of Protein G,the detection results of CCFCA method are still accurate and stable at low coupling level. Therefore,compared with the classical CFCA method,the detection results in a capture mode are reliable,a single chip can be used f
or the detection of multiple antibody-analyte through regeneration,and it is still sensitive at low coupling density,which can be a better choice for the detection of active protein concentration in the future.
Zhou H X , Pang X D . Chem. Rev. , 2018 , 118 : 1691 - 1741 .
Zhang Z Y , Yang Y L , Zhou P , Zhang X , Wang J Y . Food Chem. , 2017 , 217 : 678 - 686 .
Tzeng S R , Kalodimos C G . Nature , 2012 , 488 : 236 - 240 .
Wang J Y , Valdez A , Chen Y C . J. Pharm. Biomed. Anal. , 2017 , 139 : 263 - 268 .
Lisi S , Scarano S , Fedeli S , Pascale E , Cicchi S , Ravelet C , Peyrin E , Minunni M . Biosens. Bioelectron. , 2017 , 93 : 289 - 292 .
Masiri J , Benoit L , Thienes C , Kainrath C , Barrios-Lopez B , Agapov A , Dobritsa A , Nadala C , Sung S L , Samadpour M . Food Control , 2017 , 76 : 102 - 107 .
Wang C G , Williams N S . J. Pharm. Biomed. Anal. , 2013 , 75 : 112 - 117 .
Li J L , Wu L Q , Jin Y X , Su P , Yang B , Yang Y . Anal. Bioanal. Chem. , 2016 , 408 ( 13 ): 3485 - 3493 .
Keshishian H , Addona T , Burgess M , Kuhn E , Carr S A . Mol. Cell. Proteom. , 2007 , 6 ( 12 ): 2212 - 2229 .
Huang T , Zhang W , Dai X H , Zhang X G , Quan C , Li H M , Yang Y . Talanta , 2014 , 125 : 94 - 101 .
Karlsson R . Biophys. Rev. , 2016 , 8 ( 4 ): 347 - 358 .
GE Healthcare . Biacore Concentration Analysis Handbook . Uppsala : GE Healthcare , 2007 .
GE Healthcare Life Sciences . Biacore Assay Handbook . Uppsala : GE Healthcare life Sciences , 2012 .
Homola J . Chem. Rev. , 2008 , 108 ( 2 ): 462 - 493 .
Yanase Y , Hiragun T , Ishii K , Kawaguchi T , Yanase T , Kawai M , Sakamota K , Hide M . Sensors , 2014 , 14 ( 3 ): 4948 - 4959 .
Khurana S , King L R , Manischewitz J , Coyle E M , Golding H . Vaccine , 2014 , 32 ( 19 ): 2188 - 2197 .
Olaru A , Bala C , Jaffrezic-Renault N , Aboul-Enein H Y . Crit. Rev. Anal. Chem. , 2015 , 45 ( 2 ): 97 - 105 .
Shah V G , Ray S , Karlsson R , Srivastava S . Talanta , 2015 , 144 : 801 - 808 .
Karlsson R , Fagerstam L , Nilshans H , Persson B . J. Immunol. Methods , 1993 , 166 ( 1 ): 75 - 84 .
Su P , He Z J , Wu L Q , Li L , Zheng K L , Yang Y . Talanta , 2017 , 178 : 78 - 84 .
Hu T T , Wu L Q , Sun X N , Su P , Yang Y . Anal. Bioanal. Chem . , 2020 , 412 ( 12 ): 2777 - 2784 .
Li X F , Zhang Y W , Hao L L , Liu Y J , Wang X , Yang H X , Kong J M . Talanta , 2021 , 223 ( 2 ): 121730 .
Liu D L , Qian Y R , Xu R , Zhang Y , Ren X , Ma H M , Wei Q . Sens. Actuators B , 2021 , 346 : 130456 .
Lan W J , Lin Y M , Men Z H , Yan L . Anal. Bioanal. Chem. , 2017 , 409 ( 22 ): 5259 - 5267 .
Bai Y Q , Shen W L , Zhu M L , Zhang L , Wei Y H , Tang H X , Zhao J P . J.Cell. Biochem. , 2019 , 120 ( 1 ): 105 - 114 .
Yang H S , Bao J , Huo D Q , Zeng Y , Wang X F , Samalo M , Zhao J Y , Zhang S Y , Shen C H , Huo C J . Talanta , 2021 , 224 : 121816 .
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构