
浏览全部资源
扫码关注微信
1.东华理工大学 核资源与环境国家重点实验室,江西 南昌 330013
2.南昌大学 化学化工学院, 江西 南昌 330031
邱建丁,博士,教授,研究方向:多孔功能材料,E-mail:jdqiu@ncu.edu.cn
收稿:2024-09-30,
修回:2024-10-24,
纸质出版:2025-01-15
移动端阅览
夏蒸,雷兰,石铁应,鲍云云,梁汝萍,邱建丁.羟基磷灰石改性竹笋壳生物炭的合成及吸附性能研究[J].分析测试学报,2025,44(01):126-134.
XIA Zheng,LEI Lan,SHI Tie-ying,BAO Yun-yun,LIANG Ru-ping,QIU Jian-ding.Synthesis and Adsorption Properties of Hydroxyapatite-modified Biochar from Bamboo Shoot Shell[J].Journal of Instrumental Analysis,2025,44(01):126-134.
夏蒸,雷兰,石铁应,鲍云云,梁汝萍,邱建丁.羟基磷灰石改性竹笋壳生物炭的合成及吸附性能研究[J].分析测试学报,2025,44(01):126-134. DOI: 10.12452/j.fxcsxb.240930432.
XIA Zheng,LEI Lan,SHI Tie-ying,BAO Yun-yun,LIANG Ru-ping,QIU Jian-ding.Synthesis and Adsorption Properties of Hydroxyapatite-modified Biochar from Bamboo Shoot Shell[J].Journal of Instrumental Analysis,2025,44(01):126-134. DOI: 10.12452/j.fxcsxb.240930432.
该研究以竹笋壳为原料合成了具有多孔结构和亲水性磷酸基团的羟基磷灰石改性竹笋壳生物炭(BS-HAP),用于高效吸附废水中的铀酰离子(UO
2
2+
)。BS-HAP的多孔结构可有效增加与UO
2
2+
的接触面积,促进对UO
2
2+
的吸附;BS-HAP中的磷酸基团可为化学吸附UO
2
2+
提供结合位点,使得BS-HAP对UO
2
2+
具有优异的吸附性能。同时,Ca²
+
与UO
2
2+
之间的离子交换作用以及生物炭与UO
2
2+
之间的静电相互作用,协同促进了BS-HAP对UO
2
2+
的吸附。在酸性条件下,BS-HAP对UO
2
2+
的吸附容量为815.2 mg·g
-
¹。BS-HAP不仅对UO
2
2+
具有强的吸附能力,还具有良好的选择性和稳定性,即使经多次循环使用,仍能保持对UO
2
2+
的高效去除能力。BS-HAP为含铀废水处理提供了有效方法,对推动绿色可持续的废水处理技术发展具有重要意义。
Hydroxyapatite modified bamboo shoot shell biochar(BS-HAP) with porous structure and hydrophilic phosphate group was synthesized from bamboo shoot shell to adsorb uranyl ions(UO
2
2+
) in wastewater. The porous structure of BS-HAP can effectively increase the contact area with UO
2
2+
and promote the adsorption process of UO
2
2+
. The phosphate groups in BS-HAP can provide binding sites for the chemisorption of UO
2
2+
,which makes BS-HAP excellent adsorption properties for UO
2
2+
. At the same time,the ion exchange between Ca²
+
and UO
2
2+
and the electrostatic interaction between biochar and UO
2
2+
synergistically promote the adsorption of UO
2
2+
by BS-HAP. Under acidic conditions,the adsorption capacity of BS-HAP for UO
2
2+
is 815.2 mg·g
-1
. BS-HAP not only has strong adsorption capacity for UO
2
2+
,but also has good selectivity and stability. Even under multiple recycling and actual wastewater treatment conditions,BS-HAP can still maintain the efficient removal capacity for UO
2
2+
. BS-HAP provides an effective method for the treatment of uranium containing wastewater,which is of great significance for promoting the development of green and sustainable wastewater treatment technology.
Langmuir D . Geochim. Cosmochim. Ac. , 1978 , 42 : 547 - 569 .
Scott T B , Allen G C , Heard P J , Randell M G . Geochim. Cosmochim. Ac. , 2005 , 69 ( 24 ): 5639 - 5646 .
Fan C , Miao L , Yin Y , Miao S Y , Tang X , Liu Y , Liang B , Qin Z M , Chen Y L , He Z W , Wang Y H . Chem. Eng. J. , 2022 , 434 : 134708 .
Chen Y , Wei Y , He L F , Tang F D . J. Chromatogr. A , 2016 , 1466 : 37 - 41 .
Banala U K , Das N P I , Toleti S R . Environ. Technol. Innovation , 2021 , 21 : 101254 .
Liu L , Chen J , Liu F , Song W C , Sun Y B . Environ. Res. , 2021 , 194 : 110691 .
Liu X , Wang X , Jiang W , Zhang C R , Zhang L , Liang R P , Qiu J D . Chem. Eng. J. , 2022 , 450 : 138062 .
Cui W R , Li F F , Xu R H , Zhang C R , Chen X R , Yan R H , Liang R P , Qiu J D . Angew. Chem. Int. Ed. , 2020 , 59 ( 40 ): 17684 - 17690 .
Doroshenko I , Zurkova J , Moravec Z , Bezdicka P , Pinkas J . Ultrason. Sonochem. , 2015 , 26 : 157 - 162 .
Ji D , Liu Y , Wang X , Qiao Z Q , Yang J L , Bai Z H , Guan S X , Li Z D , Wu H J . New J. Chem. , 2023 , 47 ( 1 ): 109 - 119 .
Roberts K G , Gloy B A , Joseph S , Scott N R , Lehmann J . Environ. Sci. Technol. , 2010 , 44 ( 2 ): 827 - 833 .
Odega C A , Ayodele O O , Ogutuga S O , Anguruwa G T , Adekunle A E , Fakorede C O . Adv. Bamboo Sci. , 2023 , 2 : 100012 .
Hassan M , Liu Y , Naidu R , Parikh S J , Du J H , Qi F J , Willett I R . Sci. Total Environ. , 2020 , 744 : 140714 .
Abdel-Shafy H I , Mansour M S . Egypt. J. Pet. , 2018 , 27 ( 4 ): 1275 - 1290 .
Palle K , Vunguturi S , Subba Rao K , Rao K S , Gayatri S N , Babu P R , Ali M M , Kola R . Chem. Pap. , 2022 , 76 ( 12 ): 7525 - 7534 .
González J F , Román S , González-García C M , Nabais J M V , Ortiz A L . Ind. Eng. Chem. Res. , 2009 , 48 ( 16 ): 7474 - 7481 .
Gao Q , Ni L M , He Y Y , Hou Y M , Hu W H , Liu Z J . Energy , 2022 , 247 : 123510 .
Mi B , Wang J , Xiang H , Liang F , Yang J , Feng Z , Zhang T , Hu W , Liu X , Liu Z , Fei B . Molecules , 2019 , 24 ( 16 ): 3012 .
Gao M , Wang W , Yang H B , Ye B C . Micropor. Mesopor. Mat. , 2019 , 289 : 109620 .
Zheng N C , Yin L Y , Su M H , Liu Z Q , Tsang D C W , Chen D Y . Chem. Eng. J. , 2020 , 384 : 123262 .
Pandi K , Viswanathan N . Carbohyd. Polym. , 2014 , 112 : 662 - 667 .
Liao J , Xiong T , Ding L , Xie Y , Zhang Y , Zhu W K . Biochar , 2022 , 4 : 2 - 18 .
Su M H , Liu Z Q , Wu Y H , Peng H R , Ou T , Huang S , Song G , Kong L J , Chen N , Chen D Y . Environ. Pollut. , 2021 , 268 : 115786 .
Xiong T , Jia L Y , Li Q C , Zhang Y , Zhu W K . Sep. Purif. Technol. , 2022 , 299 : 121776 .
Sun Y B , Zhang H Y , Yuan N , Ge Y L , Dai Y , Yang Z , Liu L . J. Hazard. Mater. , 2021 , 413 : 125282 .
Wang S Z , Wang J L . Chem. Eng. J. , 2020 , 385 : 123933 .
Huang Y Y , Hu C , An Y Y , Xiong Z K , Hu X B , Zhang G Z , Zheng H L . J. Hazard. Mater. , 2021 , 405 : 124195 .
Sheng L B , Ding D X , Zhang H . Sep. Purif. Technol. , 2024 , 337 : 126397 .
Huang S Q , Chen C C , Zhao Z B , Jia L Y , Zhang Y . J. Ind. Eng. Chem. , 2023 , 118 : 418 - 431 .
Gao Y , Hou J J , Zhang J , Guo J , Ming Y H , Shao Z S . J. Instrum. Anal. (高越,侯金金,张建,郭静,明远航,邵兆帅. 分析测试学报), 2023 , 42 ( 5 ): 577 - 585 .
Liao S Y , Bai J , Xia X , Liao X Z , Zhang Y L , Deng Q L , Dong F Q . J. Ind. Eng. Chem. , 2024 , 386 : 128431 .
Ouassel S , Chegrouche S , Nibou D , Melikchi R , Aknoun A , Mellah A . Water Sci. Technol. , 2021 , 83 : 1198 - 1216 .
Xuan K , Wang J , Gong Z H , Wang X G , Li J , Guo Y D , Sun Z X . J. Hazard. Mater. , 2022 , 426 : 127834 .
0
浏览量
375
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621