浏览全部资源
扫码关注微信
1.新疆师范大学 化学化工学院,新疆 乌鲁木齐 830000
2.中国科学院兰州化学物理研究所,甘肃省天然药物重点实验室,甘肃 兰州 730000
陈 佳,博士,副研究员,研究方向:新型功能材料在药物分离、标志物检测和样品处理中的应用,E-mail:jiachen@licp.cas.cn
邱洪灯,博士,研究员,研究方向:新型分离介质和分析技术在复杂成分分析中的应用,E-mail:hdqiu@licp.cas.cn
纸质出版日期:2025-01-15,
收稿日期:2024-09-30,
修回日期:2024-11-04,
移动端阅览
李丙阳,王钊,陈佳,邱洪灯.顶空固相微萃取/气相色谱法快速萃取-解吸土壤中7种芳香族化合物[J].分析测试学报,2025,44(01):172-179.
LI Bing-yang,WANG Zhao,CHEN Jia,QIU Hong-deng.Rapid Extraction-Desorption of 7 Aromatic Compounds in Soil by Headspace Solid Phase Micro-extraction and Gas Chromatography[J].Journal of Instrumental Analysis,2025,44(01):172-179.
李丙阳,王钊,陈佳,邱洪灯.顶空固相微萃取/气相色谱法快速萃取-解吸土壤中7种芳香族化合物[J].分析测试学报,2025,44(01):172-179. DOI: 10.12452/j.fxcsxb.240930430.
LI Bing-yang,WANG Zhao,CHEN Jia,QIU Hong-deng.Rapid Extraction-Desorption of 7 Aromatic Compounds in Soil by Headspace Solid Phase Micro-extraction and Gas Chromatography[J].Journal of Instrumental Analysis,2025,44(01):172-179. DOI: 10.12452/j.fxcsxb.240930430.
利用氧化石墨烯功能化修饰固相微萃取(GO@SPME)针,结合气相色谱(GC)-氢火焰离子化检测器(FID)建立了检测土壤中7种挥发性芳香烃及其衍生物(包括甲苯、氯苯、乙苯、对二甲苯、邻二甲苯、硝基苯和萘)的快速萃取和解吸策略。考察了萃取液体积、搅拌速率、萃取温度、加盐量、解吸温度、萃取时间和解吸时间对目标物萃取效果的影响,确定在土壤样品中加入内标物质(氘代甲苯),经甲醇提取,顶空固相微萃取快速富集,再结合GC-FID进行检测,基质匹配内标法定量分析。在优化的实验条件下,该方法在15 s内可实现对目标物的快速萃取与解吸(萃取时间12 s,解吸时间3 s)。土壤样品中7种挥发性芳香烃及其衍生物的线性关系良好,相关系数(
r
2
)均不小于0.998 9,方法检出限(LOD,
S
/
N
=3)为1.71~11.60 μg/g,定量下限(LOQ,
S
/
N
=10)为5.70~38.67 μg/g;在3个不同加标水平(60、120、180 μg/g)下的平均回收率为87.3%~109%,相对标准偏差(RSD)不大于12%。该方法前处理简单快速,成本较低,数据稳定可靠,适用于土壤样品中芳香族类化合物的快速检测。
A rapid extraction and desorption strategy for the detection of seven volatile aromatic hydrocarbons and their derivatives in soil has been developed utilizing a graphene oxide modified solid phase micro-extraction(GO@SPME)needle,in conjunction with gas chromatography(GC)coupled with a hydrogen flame ionization detector(FID). The target compounds inclu
de toluene,chlorobenzene,ethylbenzene,paraxylene,orthoxylene,nitrobenzene and naphthalene. The influence of seven factors(extraction liquid volume,stirring rate,extraction temperature,salt addition,desorption temperature,extraction time and desorption time) on the extraction efficiency was systematically investigated to determine optimal experimental conditions. In the experimental process,we initially introduced deuterated toluene,which serves as an internal standard,to the soil sample to calibrate the systematic errors inherent in the analytical process. In addition,the organic compounds from the soil samples were extracted through methanol soaking,a step designed to separate the target compounds from the complex soil sample. Under optimal conditions,the target analytes were rapidly enriched using headspace solid phase micro-extraction technology. Finally,the enriched samples were analyzed using GC-FID and internal standard quantification was achieved by constructing a calibration curve,ensuring the precision and reliability of the analytical results. The findings indicate that rapid extraction and desorption are feasible within 15 seconds,with extraction taking 12 seconds and desorption requiring just 3 seconds. The linear relation of seven volatile aromatic hydrocarbons and their derivatives was good,with correlation coefficients(
r
²) not less than 0.998 9. The limits of detection(LODs,
S
/
N
=3) ranged from 1.71 to 11.60 μg/g,while the limits of quantification(LOQs,
S
/
N
=10) were from 5.70 to 38.67 μg/g. The average recoveries of the seven volatile aromatic hydrocarbons and their derivatives at three spiked levels of 60,120 and 180 μg/g,ranged from 87.3% to 109%. Concurrently,the relative standard deviations(RSDs)were not more than 12%. This method has simple and fast preprocessing,low cost,stable and reliable data,and is suitable for rapid detection of aromatic hydrocarbons in soil samples.
芳香烃及其衍生物氧化石墨烯顶空固相微萃取气相色谱法快速萃取-解吸策略土壤
aromatic hydrocarbons and their derivativesgraphene oxideheadspace solid phase micro-extraction(HS-SPME)gas chromatographyrapid extraction-desorption strategysoil
Jin R,Liu G R,Zhou X,Zhang Z R,Lin B C,Liu Y H,Qi Z Y,Zheng M H. Trends Anal. Chem.,2023,160:116942.
Hishamuddin N H,Khan M F,Suradi H,Siraj B M Z,Islam M T,Sairi N A,Tajuddin H A,Jamil A K M,Akanda M J H,Yusoff S. Sustainability,2023,15:12532.
Ali I,Suhail M,Alharbi O M L,Hussain I. J. Liq. Chromatogr. Relat. Technol.,2019,42(5/6):137-160.
Khatib M,Haick H. ACS Nano,2022,16:7080-7115.
Lee H E,Kim J H,Seo D,Yoon S J. Atmosphere,2024,15(2):223.
Meng F L,Yuan Z Y,Meng D. Chemosensors,2023,11(11):553.
Yu Y J. Application of Metal-Organic Porous Polymers in Fluorescence and Colorimetric Detection of Water Environmental Pollutants. Hangzhou:Zhejiang Sci-Tech University(俞芸杰. 金属有机多孔聚合物在荧光与比色检测水环境污染物中的应用研究. 杭州:浙江理工大学),2023.
Gao J. Research on Functionalized Nanomaterials Based Electrochemical Sensors for Organic Environmental Pollutants. Mianyang:Southwest University of Science and Technology(高俊. 基于功能化纳米材料的有机环境污染物电化学传感器的研究. 绵阳:西南科技大学),2020.
Zhang M M. In-situ Growth of Covalent Organic Frameworks and Applied to Paper Spray Mass Spectrometry Analysis of Environmental Pollutants. Jinan:Shandong Normal University(张敏敏. 原位生长共价有机框架材料应用于纸喷雾质谱分析环境污染物. 济南:山东师范大学),2021.
Gao M J. Development of Covalent Organic Frameworks Based Solid Phase Extraction and Its Application in the Samples Pretreatment of Environmental Pollutants. Luzhou:Southwest Medical University(高嫚婕. 基于共价有机骨架材料的固相萃取及其在环境污染物前处理中的应用研究. 泸州:西南医科大学),2021.
Zhang Y,Cui J,Mei L R,Shi X Y M. J. Instrum. Anal.(张玉,崔进,梅连瑞,史芯沂美. 分析测试学报),2023,43(6):875-882.
Zhou Y,Su Q K,Zhao C C,Xie X,Luo S,He J,Wu J L. China Meas. Test(周杨,苏勤凯,赵陈晨,谢翔,罗霜,何晋,吴佳伦. 中国测试),2023,49(2):80-86.
Ge K,He Z F,Lin J N,Hu Y L,Li G K. J. Instrum. Anal.(葛琨,何致峰,林佳娜,胡玉玲,李攻科. 分析测试学报),2021,40(11):1588-1595.
Wang J Y. Detection of Trace Polycyclic Aromatic Hydrocarbons in Environment Water Based on Surface-enhanced Raman Spectroscopy. Xiamen:Xiamen University(王炬勇. 基于表面增强拉曼光谱技术对环境水体中痕量多环芳烃的检测研究. 厦门:厦门大学),2019.
Wei W C. Development of an On-site System for Rapid Detection of PAHs in Coastal Zone Water Samples. Yantai:Yantai University(魏文超. 海岸带水体多环芳烃现场快速检测传感器系统的研制. 烟台:烟台大学),2014.
Ma C,Cao R,Sun S,Zhang H J,Chen J P,Xiong Z L,Lu X B. Chin. J. Chromatogr.(马畅,曹蓉,孙帅,张海军,陈吉平,熊志立,卢宪波. 色谱),2022,40(10):944-951.
Jagirani M S,Soylak M. Curr. Opin. Green Sustainable Chem.,2024,47:100899.
Khataei M M,Yamini Y,Shamsayei M. J. Sep. Sci.,2021,44(6):1231-1263.
Llompart M,Celeiro M,García-Jares C,Dagnac T. Trends Anal. Chem.,2019,112:1-12.
Yin S J,Zhao J,Yang F Q. J. Pharm. Biomed. Anal.,2020,82:1251-1274.
Bosco C D,De Cesaris M G,Felli N,Lucci E,Fanali S,Gentili A. Microchim. Acta,2023,190:175.
Yin L,Xu J Q,Huang Z B,Chen G S,Zheng J,Ouyang G F. Prog. Chem.(殷立,徐剑桥,黄周兵,陈国胜,郑娟,欧阳钢锋. 化学进展),2017,29(9):1127-1141.
Sadegh F,Sadegh N,Wongniramaikul W,Apiratikul R,Choodum A. Process Saf. Environ. Prot.,2023,182:559-578.
Li H D. Detection of Polycyclic Aromatic Hydrocarbons and Nitrobenzene Pollutants in Environmental Samples by Solid-phase Microextraction Fiber Combined with Gas Chromatography. Baoding:Hebei Agricultural University(李洪达. 新型固相微萃取纤维结合气相色谱检测环境样品中的多环芳烃类和硝基苯类污染物. 保定:河北农业大学),2021.
Zang X H,Chang Q Y,Pang Y C,Wang L,Zhang S H,Wang C,Wang Z. Food Chem.,2021,395:129984.
Chen Z B,Wang J,Li Q Q,Wu Y P,Liu Y J,Ding Q Q,Chen H,Zhang W M,Zhang L. Anal. Chim. Acta,2022,1200:339586.
Feng J J,Feng J Q,Ji X P,Li C Y,Han S,Sun H L,Sun M. Trends Anal. Chem.,2021,137:116208.
Trujillo-Rodríguez M J,Anderson J L. Anal. Chim. Acta,2019,1047:52-61.
Hu D P,Jia Y H,Yang S P,Lin C Q,Huang F Y,Wu R H,Guo S M,Xie K F,Du P C. Chem. Eng. J.,2024,488:151160.
Huang J L,Chen Y,Dang H,Yao X Q,Huang J Y. J. Instrum. Anal.(黄嘉乐,陈扬,党华,姚晓庆,黄嘉瑜. 分析测试学报),2024,43(3):455-463.
Li X J,Ye C W,Huo X L,Zeng Z R. Microchim. Acta,2010,168:161-167.
Zou P,Wang L,Yang Z G,Lee H,Li H P. J. Central South Univ.,2016,23:59-67.
Slaghenaufi D,Tonidandel L,Moser S,Román V T,Larcher R. Food Anal. Methods,2017,10:3706-3715.
Ye Q,Zheng D G,Chen Z B. J. Anal. Chem.,2011,66:285-289.
Alimzhanova M,Mamedova M,Ashimuly K,Alipuly A,Adilbekov Y. Food Chem.:X,2022,14:100345.
Wu T,Zang X H,Wang M T,Chang Q Y,Wang C,Wu Q H,Wang Z. J. Agric. Food Chem.,2018,66(42):11158-11165.
HJ 742-2015. Soil and Sediment—Determination of Volatile Aromatic Hydrocarbons—Headspace Gas Chromatography. Ministry of Ecology and Environment of the People's Republic of China(土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法. 中华人民共和国生态环境部).
Wang Z,Zhang X Y,Yang Q,Zhang S H,Chang G F,Zang X H,Wang C,Wang Z. J. Chromatogr. A,2022,1681:463474.
Zhou L,Zhu H W,Zhong Y Q,He C X,Lei Y. J. Mod. Med. Health(周亮,朱韩武,钟艳琴,贺春霞,雷飏. 现代医药卫生),2023,39(3):368-372,377.
Wang W,Zhao Y,Liu C W. Chin. J. Health Lab. Technol.(王玮,赵莹,刘存卫. 中国卫生检验杂志),2022,32(24):2945-2950.
Guan C C. Chin. J. Health Lab. Technol.(关晨晨. 中国卫生检验杂志),2023,33(1):28-32,35.
Zhang S H,Yang Q,Li Z,Wang W C,Wang C,Wang Z. Anal. Bioanal. Chem.,2017,409(13):3429-3439.
Xie S,Wei F,Bi J P,Zhu R R,Qin D L,Liu P,Liu L B. J. Green Sci. Technol. (谢沙,魏凤,毕军平,朱瑞瑞,秦迪岚,刘沛,刘荔彬. 绿色科技),2021,23(22):104-109.
Jia X F,Zhang Y W,Zou X R,Ye S M,Tan S H. Anhui Chem. Ind.(贾晓菲,张益文,邹学仁,叶少媚,谭淑铧. 安徽化工),2022,48(6):126-129,134.
0
浏览量
31
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构