浏览全部资源
扫码关注微信
1.长沙医学院 新型药物制剂研发湖南省重点实验室,湖南 长沙 410219
2.中南林业科技大学 理学院/应用化学研究所 湖南 长沙 410004
3.湖南大学化学 化工学院 化学生物传感全国重点实验室,湖南 长沙 410082
方焕,博士,助理研究员,研究方向:化学计量学,E-mail:hfang@hnu.edu.cn
王童,博士,助理教授,研究方向:化学计量学,E-mail:wangtong@hnu.edu.cn
收稿日期:2024-09-29,
修回日期:2024-11-04,
录用日期:2024-11-06,
纸质出版日期:2025-06-15
移动端阅览
王颖琦,赵汉卿,方焕,王童.基质辅助激光解吸-飞行时间质谱结合随机森林融合模型用于白术的产地溯源分析[J].分析测试学报,2025,44(06):1147-1153.
WANG Ying-qi,ZHAO Han-qing,FANG Huan,WANG Tong.MALDI-TOF MS with Random Forest Fusion Model Applied to the Geographical Origin Traceability of Atractylodes Macrocephala Koidz.[J].Journal of Instrumental Analysis,2025,44(06):1147-1153.
王颖琦,赵汉卿,方焕,王童.基质辅助激光解吸-飞行时间质谱结合随机森林融合模型用于白术的产地溯源分析[J].分析测试学报,2025,44(06):1147-1153. DOI: 10.12452/j.fxcsxb.240929422.
WANG Ying-qi,ZHAO Han-qing,FANG Huan,WANG Tong.MALDI-TOF MS with Random Forest Fusion Model Applied to the Geographical Origin Traceability of Atractylodes Macrocephala Koidz.[J].Journal of Instrumental Analysis,2025,44(06):1147-1153. DOI: 10.12452/j.fxcsxb.240929422.
该研究利用基质辅助激光解吸-飞行时间质谱(MALDI-TOF MS)分析技术结合两种改进的随机森林融合算法对白术进行产地溯源分析。首先通过MALDI-TOF MS获取了来自3个省份白术样本的质谱数据,每个样本的数据大小为1×234 154。鉴于样本数据量庞大,故采用数据分箱策略进行初步简化(1×6 600)。然后通过设定的累计方差贡献率阈值进行主成分分析,对数据进行降维。利用降维后的数据构建自适应增强极端随机森林模型(AERF)和自适应增强平衡随机森林模型(ABRF),最终通过模型融合策略获得AERF-ABRF模型对白术进行产地溯源。结果表明,所提出的基于降维数据构建的AERF-ABRF能够准确区分来自3个省份的白术样本,其对测试集和预测集的分类准确率均达到100%。同时,与单一判别模型相比,模型融合策略具有更高的分类准确率。
In this study,the matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF MS) was used to analyze the geographical origin traceability of Atractylodes macrocephala Koidz. in combination with two improved random forest fusion algorithms. Firstly,mass spectrum data of Atractylodes macrocephala Koidz. samples from 3 provinces were obtained by MALDI-TOF MS,and the data size of each sample was 1×234 154. In view of the large amount of each sample data,the data were preliminarily simplified by data bins strategy(1×6 600). Then,the principal component analysis was carried out to reduce the dimension by set the threshold of cumulative variance contribution rate. The dimensionality reduction data were used to construct the adaptive enhanced extreme random forest model(AERF) and the adaptive enhanced balanced random forest model(ABRF). Finally,AERF-ABRF model was obtained through model fusion strategy to trace the origin of Atractylodes macrocephala Koidz.. The results showed that the adaptive enhanced random forest model combined with model fusion strategy based on dimensionality reduction of data proposed in this study could accurately distinguish the samples from 3 provinces,and achieved correct classification rate(CCR) values of 100% for both the validation and test sample sets. At the same time,compared to individual models,the model fusion strategy exhibited a much higher correct classification rate.
Guang H L , Qun Z , Su Q S , Kelvin S L , Hao Z , Zhong Z Z . J. Mol. Struct. , 2008 , 883 : 91 - 98 .
Wang Q , Yu Y J , Fu H Y , Li X , Yang J . J. Instrum. Anal. (王巧,于永杰,付海燕,李翔,杨健. 分析测试学报), 2023 , 42 ( 4 ): 389 - 401 .
Liu W , Qiu X W , Jiang L W , Fan W , Li P , Zheng Y . J. Instrum. Anal. (柳薇,邱熙文,蒋立文,范伟,李跑,郑郁. 分析测试学报), 2025 , 44 ( 2 ): 246 - 252 .
Zhang H , Lin C , Yin L , Si J , Yu M , Li J , Li L , Zhang T , Zou Z . Fitoterapia , 2023 , 165 : 105431 .
Yang S , Zhang J , Yan Y , Yang M , Li C , Zhong L , Gong Q , Yu H . Front. Pharmacol. , 2020 , 10 : 1629 .
Hu L , Chen X , Yang J , Guo L . Rapid Commun. Mass Spectrom. , 2019 , 33 ( 22 ): 1703 - 1710 .
Zhou J , Li Y , Zhao J , Xue X , Wu L , Chen F . Food Chem. , 2008 , 108 ( 2 ): 749 - 759 .
Gao L , Yang R W , Li L Q , Han B , Kai G Y . J. Appl. Res. Med. Aromat. Plants , 2025 , 46 : 100632 .
Pan Z , Xiong F , Chen Y L , Wan G G , Zhang Y , Chen Z W , Cao W F , Zhou G Y . Molecules , 2019 , 24 ( 24 ): 4478 .
Anastasaki E , Kanakis C , Pappas C , Maggi L , Campo C P , Carmona M , Alonso G L , Polissiou M G . Eur. Food Res. Technol. , 2009 , 229 : 899 - 905 .
Gross J , Strupat K . TrAC,Trends Anal. Chem. , 1998 , 17 ( 8/9 ): 470 - 484 .
Jin Y R , Oh M J , Yuk H J , An H J , Kim D S . J. Ginseng Res. , 2021 , 45 ( 5 ): 539 - 545 .
Lai Y H , Wu Q , So P K , Mok D K , Che C T , Yao Z P . Int. J. Mass Spectrom. , 2018 , 434 : 258 - 263 .
Agusta Z , Adiwijaya A . Int. J. Adv. Intell. Inf. , 2019 , 5 ( 1 ): 58 .
Luo J , Liu Y , Zhang S , Liang J . Meas. Sci. Technol. , 2021 , 32 ( 11 ): 114006 .
Xu Y , Meng R , Zhao X . Appl. Sci. , 2019 , 9 ( 9 ): 1728 .
Karthikeyan V , Suja P S . Appl. Soft Comput. , 2022 , 131 : 109826 .
Wang X , Jin Y , Schmitt S , Olhofer M . ACM Comput. Surv. , 2023 , 55 ( 13 ): 1 - 36 .
Wickramarachchi D C , Robertson B L , Reale M , Price C J , Brown J . Comput. Stat. Data Anal. , 2016 , 96 : 12 - 23 .
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构