1.中国科学技术大学研究生院 科学岛分院,安徽 合肥 230026
2.中国科学院 合肥物质科学研究院,安徽 合肥 230031
3.山东大学 能源与动力工程学院,山东 济南 250061
4.中科石金(安徽)中子技术有限公司,安徽 合肥 230031
5.中子科学国际研究院,山东 青岛 266199
6.山东省中子科学技术重点实验室,山东 青岛 266199
梁参军,博士,副研究员,研究方向:中子管、中子发生器及其应用研究,E-mail:canjun.liang@fds.org.cn
收稿:2024-09-05,
修回:2024-09-24,
纸质出版:2024-10-15
移动端阅览
胡江钰,范宇,梁参军,郝丽娟,刘朝伟,宋勇.Al2O3对Ti膜离子注入表面损伤及D滞留量的影响研究[J].分析测试学报,2024,43(10):1664-1668.
HU Jiang-yu,FAN Yu,LIANG Can-jun,HAO Li-juan,LIU Chao-wei,SONG Yong.Effect of Al2O3 on Surface Damage and D Retention of Ti Film During Ion Implantation[J].Journal of Instrumental Analysis,2024,43(10):1664-1668.
胡江钰,范宇,梁参军,郝丽娟,刘朝伟,宋勇.Al2O3对Ti膜离子注入表面损伤及D滞留量的影响研究[J].分析测试学报,2024,43(10):1664-1668. DOI: 10.12452/j.fxcsxb.240905375.
HU Jiang-yu,FAN Yu,LIANG Can-jun,HAO Li-juan,LIU Chao-wei,SONG Yong.Effect of Al2O3 on Surface Damage and D Retention of Ti Film During Ion Implantation[J].Journal of Instrumental Analysis,2024,43(10):1664-1668. DOI: 10.12452/j.fxcsxb.240905375.
为提高中子管Ti膜的储氢及抗溅射损伤性能,该研究通过在Ti膜表面沉积一层Al
2
O
3
保护层,研究了该保护层对Ti膜在D离子注入过程中表面损伤及D滞留量的影响。采用射频磁控溅射技术完成了Ti膜和表面有Al
2
O
3
保护层的Ti膜(Al
2
O
3
/Ti膜)样品的制备,开展了D离子注入实验,利用扫描电子显微镜(SEM)对D离子注入前后的表面形貌进行分析,并通过热脱附谱(TDS)实验研究保护层对Ti膜中D滞留量的影响。SEM结果表明,注入5×10
17
个D离子后,Ti膜表面出现开裂和剥离现象,而Al
2
O
3
/Ti膜表面无开裂和剥离现象,Al
2
O
3
保护层抑制了Ti膜的开裂和剥离,可提高Ti膜使用寿命。TDS实验结果表明,增加Al
2
O
3
保护层后,D脱附峰值温度提升4.9%,膜内D滞留量提升10.3%,在D离子注入过程中Al
2
O
3
保护层可阻止膜内D原子的释放进而提升Ti膜内D滞留量。该文初步验证了Al
2
O
3
有作为中子管Ti膜保护层材料的潜力。
To further enhance the hydrogen storage and sputter damage resistance of Ti film used in neutron tube,this study deposited an Al
2
O
3
protective layer on the surface of Ti film and investigated its impact on surface damage and D retention during D ion implantation. The Ti film
and Ti film with Al
2
O
3
protective layer(Al
2
O
3
/Ti film) were prepared using radio-frequency magnetron sputtering technology. D ion implantation experiments were conducted,and scanning electron microscopy(SEM) was used to analyze the surface morphology before and after D ion implantation. Additionally,thermal desorption spectroscopy(TDS) was employed to study the effect of the protective layer on the D retention in the Ti film. SEM results showed that after implanting 5×10
17
D ions,the Ti film surface exhibited cracking and peeling,whereas the Al
2
O
3
/Ti film surface did not show such phenomena. The Al
2
O
3
protective layer suppressed cracking and peeling of the Ti film,which can enhance the film's life-time. TDS results indicated that with the addition of the Al
2
O
3
protective layer,the peak desorption temperature of D increased by 4.9%,and the D retention in the film increased by 10.3%. During D ion implantation,the Al
2
O
3
protective layer prevented the release of D atoms from the film,thereby improving D retention amount. This study preliminarily confirms the potential of Al
2
O
3
as a protective layer for Ti film in neutron tube.
Wagner J C , Peplow D E , Evans T M . Nucl. Technol. , 2009 , 168 ( 3 ): 799 - 809 .
Li Y A , Zhang Z D , Chen S Z , Li T S , Guo H M . IEEE Trans. Nucl. Sci. , 2022 , 69 ( 11 ): 2245 - 2251 .
Ye L J , Zhang D D , Yang Z , Chen Y H . Nucl. Tech. (叶龙建,张东东,杨振,陈宇航. 核技术), 2024 , 47 ( 2 ): 5 - 18 .
Shi X C , Yang L , Wu Z H , Yang X J , Yao C Y . Shandong Chem . Ind. (石祥琛,杨立,吴展华,杨小军,姚春艳. 山东化工), 2023 , 52 ( 10 ): 114 - 118 .
Verbeke J M , Leung K N , Vujic J . Appl. Radiat. Isot. , 2000 , 53 ( 4/5 ): 801 - 809 .
Ludewigt B A , Wells R P , Reijonen J . Nucl. Instrum. Methods Phys. Res. B , 2007 , 261 ( 1/2 ): 830 - 834 .
Begrambekov L B , Dovganyuk S S , Evsin A E , Kaplevsky A S , Shutikova M I . Bull . Russ. Acad. Sci. ,Phys., 2018 , 82 ( 2 ): 117 - 121 .
Nian R X , Jing S W . Nucl. Tech. (年瑞雪,景士伟. 核技术), 2018 , 41 ( 8 ): 18 - 24 .
Guo W T , Zhao S J , Nian R X , Xue H , Jing S W . Radiat. Phys. Chem. , 2021 , 186 : 109548 .
Zakharov A M , Dvoichenkova O A , Evsin A E . Phys. At. Nucl. , 2015 , 78 ( 14 ): 1643 - 1645 .
Wu B Z , Chen H , Sun S , Yang Z M , Zhang J C , Cao Y X , Luo D W , Wang Y . Surf. Technol. (吴宝珍,陈鸿,孙森,杨朝明,张健聪,曹潆心,罗栋威,汪渊. 表面技术), 2020 , 49 ( 4 ): 132 - 140 .
Zhang G K , Xiang X , Yang F L , Lai X C , Yan Y W , Ling G P , Chen C A , Wang X L . J. Radioanal. Nucl. Chem. (张桂凯,向鑫,杨飞龙,赖新春,严有为,凌国平,陈长安,汪小琳. 核化学与放射化学), 2015 , 37 ( 5 ): 310 - 320 .
Huang H T , Liu Y , Wang W . Mater. Rev. (黄洪涛,刘阳,王旺. 材料导报), 2023 , 37 ( 7 ): 43 - 49 .
Haynes W M . CRC Handbook of Chemistry and Physics . 95th ed . Boca Raton : CRC Press , 2014 .
Shao S S , Xuan F Z , Wang Z D , Tu S T . J. Phys. D:Appl. Phys. , 2009 , 42 ( 17 ): 175413 - 175420 .
Choo W Y , Lee J Y . Metall. Mater. Trans. A , 1982 , 13 ( 1 ): 135 - 140 .
López-Suárez A , García-Zúñiga N . Int. J. Hydrogen Energy , 2017 , 42 ( 20 ): 14199 - 14204 .
Gupta J , Hure J , Tanguy B , Laffont L , Lafont M C , Andrieu E . J. Nucl. Mater. , 2016 , 476 : 82 - 92 .
Hou Y N , Yang K M , Liu Y , Fan T X . Powder Metall . Technol. (侯雅男,杨昆明,刘悦,范同祥. 粉末冶金技术), 2023 , 41 ( 6 ): 490 - 499,507 .
López-Suárez A , Valencia C E , López-Patiño J , Vargas M C , Fuentes B E . Int. J. Hydrogen Energy , 2015 , 40 ( 11 ): 4194 - 4199 .
Liu X , An X D , Wang Q Q , Zhu T , Wan M P , Ye F J , Wang B Y , Cao X Z . J. Mater. Res. Technol. , 2023 , 22 : 1322 - 1330 .
Pan X D , Xu Y P , Lu T , Zhou H S , Li X C , Gao F , Luo G N . Nucl. Fusion , 2021 , 61 ( 3 ): 36004 - 36015 .
Balan E . Eur. J. Miner. , 2020 , 32 ( 5 ): 457 - 467 .
0
浏览量
286
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
