浏览全部资源
扫码关注微信
1.盘锦检验检测中心,辽宁 盘锦 124000
2.国家食品安全风险评估中心,北京 100021
3.大连理工大学 化工海洋与生命学院,辽宁 盘锦 124221
陈达炜,博士,研究员,研究方向:食品安全,E-mail:dila2006@163.com
收稿日期:2024-08-27,
修回日期:2024-09-30,
录用日期:2024-10-24,
纸质出版日期:2025-04-15
移动端阅览
毕军,章沙沙,李猛,张嘉宁,陈达炜.盘锦大米品质差异分析及鉴别模型的构建[J].分析测试学报,2025,44(04):602-610.
BI Jun,ZHANG Sha-sha,LI Meng,ZHANG Jia-ning,CHEN Da-wei.Quality Difference Analysis of Panjin Rice and Construction of Identification Model[J].Journal of Instrumental Analysis,2025,44(04):602-610.
毕军,章沙沙,李猛,张嘉宁,陈达炜.盘锦大米品质差异分析及鉴别模型的构建[J].分析测试学报,2025,44(04):602-610. DOI: 10.12452/j.fxcsxb.240827350.
BI Jun,ZHANG Sha-sha,LI Meng,ZHANG Jia-ning,CHEN Da-wei.Quality Difference Analysis of Panjin Rice and Construction of Identification Model[J].Journal of Instrumental Analysis,2025,44(04):602-610. DOI: 10.12452/j.fxcsxb.240827350.
采用固相微萃取技术结合气相色谱-质谱联用(SPME/GC-MS)建立了一种大米中挥发性组分的测定方法。利用该方法对盘锦地区主要种植的12个盘锦大米品种以及10种市售非盘锦大米中的挥发性组分进行分析,共检测出23种挥发性组分,包括醇类4种、醛类10种、酮类4种、酯类1种、烷烃及酸酚等其他类4种。采用面积归一化法计算各挥发性组分的相对含量,利用R语言对数据进行深入挖掘,构建线性回归模型和随机森林模型对盘锦大米与非盘锦大米的鉴别方法进行研究。结果表明:两个数学模型均能实现盘锦大米的鉴别,具有很高的准确性以及优异的分类能力,其预测准确度均为100%。两者各有优势,相互佐证,提高了盘锦大米鉴别的可靠性,可为地理标志产品盘锦大米的产地保护研究提供理论支撑。
The method for the determination of volatile components in rice was established based on solid-phase microextraction/gas chromatography-mass spectrometry(SPME/GC-MS). This method was used to detect and analyze the volatile components in 12 kinds of Panjin rice varieties mainly planted in Panjin area and 10 kinds of non-Panjin rice. A total of 23 volatile components were detected,including 4 kinds of alcohols,10 kinds of aldehydes,4 kinds of ketones,1 kind of esters,and 4 other kinds such as alkanes and acid phenols. Area normalization method was used to calculate the relative content of each volatile component and R language was used to dig the data deeply. The linear regression model and random forest model were constructed to study the identification methods of Panjin rice and non-Panjin rice. The results showed that both mathematical models established in this study can complete the identification of Panjin rice with high accuracy and excellent classification effect. The prediction accuracy was 100%. These two mathematical models have their own advantages and support each other,which greatly improve the reliability of Panjin rice identification and provide theoretical support for the study on production area protection of geographical indication product——Panjin rice.
Huang Y W , Xu J , Wang R L , Dou K N . Food Ind. (黄亚伟 , 徐晋 , 王若兰 , 豆康宁 . 食品工业) , 2016 ,( 4 ): 266 - 269 .
Liu M , Wang J J , Liu F H , Wang D , Tan S M . China Brew. (刘敏,王健健,刘芳宏,王丹,谭书明. 中国酿造), 2017 , 36 ( 6 ): 170 - 174 .
Hu X Q , Lu L , Guo Z L , Zhu Z W . Trends Food Sci. Technol. , 2020 , 97 : 136 - 146 .
Chen T , Chen X , Meng L , Wei Z , Chen B , Wang Y , Chen H , Cheng Q . Anal. Lett. , 2022 , 55 ( 13 ): 2033 - 2045 .
Zhao Q Y , Yousaf L , Xue Y , Shen Q . J. Sci. Food Agric. , 2020 , 100 ( 8 ): 3435 - 3444 .
Xu J Y , Liu K W , Zhang C . Trends Food Sci. Technol. , 2021 , 109 : 83 - 93 .
Zheng Z C , Zhang C , Liu K W , Liu Q Q . Rice , 2022 , 15 ( 1 ): 53
Ramtekey V , Cherukuri S , Modha K G , Kumar A , Kethineni U B , Pal G , Singh A N , Kumar S . Rev. Anal. Chem. , 2021 , 40 ( 1 ): 272 - 292 .
Al-Dalali S , Zheng F P , Sun B G , Zhou C X , Li M , Chen F . LWT-Food Sci . Technol. , 2020 , 133 : 109969 .
Wang Z Y , Dou B X , Ma C M , Zhang Y L , Liu Y , Zhang N . Food Sci. Technol. , 2022 , 43 : e100222 .
Miao R R , Sun Y , Shi C B , Jiang L Z . Food Res. Dev . (苗榕芯,孙莹,石长波,江连洲. 食品研究与开发), 2020 , 41 ( 4 ): 219 - 224 .
Jiang L Y , Tan J , Xiao X S . J. Chin. Cereals Oils Assoc . (蒋黎艳,谭姣,肖新生. 中国粮油学报), 2021 , 36 ( 5 ): 174 - 183 .
Zhu Q W , Yang Y J , Zeng Z L , Peng T , Yan X H , Zhao J X , Xia J H , Yu P , Wen X F , Gong D M . Ind. Crops Prod. , 2023 , 201 : 116907 .
Majcher M , Jeleń H H . J. Food Compos. Anal. , 2009 , 22 ( 6 ): 606 - 612 .
Ye Z K , Zeng Y , Lin Q B , Wu X F , Hao T Y , Dong B , Li D , Zhong H N . J. Instrum. Anal. (叶智康,曾莹,林勤保,吴学峰,郝天英,董犇,李丹,钟怀宁. 分析测试学报), 2021 , 40 ( 11 ): 1596 - 1603 .
Zhang Y , Lou F M , Yang J W , Yu L . J . Southwest China Norm. Univ. : Nat. Sci. Ed . (张莹,娄方明,杨建文,余兰. 华南师范大学学报:自然科学版), 2022 , 54 ( 6 ): 44 - 50 .
Strawn L K , Fortes E D , Bihn E A , Nightingale K K , Gröhn Y T , Worobo R W , Wiedmann M , Bergholz P W . Appl. Environ. Microbiol. , 2013 , 79 ( 2 ): 588 - 600 .
Su J Y , Zhang J , Li J Q , Duan Z L , Li T , Liu H G , Wang Y Z . Mod. Food Sci. Technol. (苏久艳,张霁,李杰庆,段智利,李涛,刘鸿高,王元忠. 现代食品科技), 2019 , 35 ( 2 ): 223 - 231 .
McGrath T F , Shannon M , Chevallier O P , Ch R , Xu F , Kong F Z , Peng H , Teye E , Akaba S , Wu D , Wu L B , Cai Q , Nguyen D D L , Le V V M , Pandor S , Kapil A P , Zhang G T , McBride M , Elliott C T . J. AOAC Int. , 2021 , 104 ( 1 ): 16 - 28 .
Wang Q , Yu Y J , Fu H Y , Li X , Yang J . J. Instrum. Anal. (王巧,于永杰,付海燕,李翔,杨健. 分析测试学报), 2023 , 42 ( 4 ): 389 - 401 .
Li H , Gong Y , Ye J D , Yue J X , Zhen R Y , Zhou X Y . Food Res. Dev . (李航,龚颍,叶金铎,岳建雄,甄润英,周学永. 食品研究与开发), 2020 , 41 ( 19 ): 30 - 35 .
Cui L L , Zhao S , Zhou Y M , Wang H , Yan B B , Zhang H , Zhou X L . J. Chin. Cereals Oils Assoc . (崔琳琳,赵燊,周一鸣,王惠,闫贝贝,张欢,周小理. 中国粮油学报), 2018 , 33 ( 12 ): 134 - 141 .
Akhoundzadeh H , Gholami A , Masoum S , Moazeni-Pourasil R S . Chromatographia , 2018 , 81 : 931 - 945 .
0
浏览量
50
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构