浏览全部资源
扫码关注微信
1.皖西学院 材料与化工学院,安徽 六安 237012
2.合肥大学 能源材料与化工学院,安徽 合肥 230601
谢成根,博士,教授,研究方向:化学传感及分析检测,E-mail:cgxie@wxc.edu.cn
收稿日期:2024-08-21,
修回日期:2024-09-15,
录用日期:2024-10-10,
纸质出版日期:2025-04-15
移动端阅览
陈丽娟,陈畅畅,刘长骏,季晨阳,谢成根.叶酸调控的聚多巴胺荧光纳米探针对芦丁的分析检测[J].分析测试学报,2025,44(04):702-707.
CHEN Li-juan,CHEN Chang-chang,LIU Chang-jun,JI Chen-yang,XIE Cheng-gen.Folic Acid Regulated Polydopamine Fluorescent Nanoprobe for Rutin Determination[J].Journal of Instrumental Analysis,2025,44(04):702-707.
陈丽娟,陈畅畅,刘长骏,季晨阳,谢成根.叶酸调控的聚多巴胺荧光纳米探针对芦丁的分析检测[J].分析测试学报,2025,44(04):702-707. DOI: 10.12452/j.fxcsxb.240821334.
CHEN Li-juan,CHEN Chang-chang,LIU Chang-jun,JI Chen-yang,XIE Cheng-gen.Folic Acid Regulated Polydopamine Fluorescent Nanoprobe for Rutin Determination[J].Journal of Instrumental Analysis,2025,44(04):702-707. DOI: 10.12452/j.fxcsxb.240821334.
为实现芦丁的快速、选择性识别及定量检测,该文以叶酸和多巴胺为前驱体,通过一种简单、绿色、低成本的方法制备了可发射蓝色荧光的有机荧光纳米颗粒(FPONs)用于芦丁的荧光检测。该荧光纳米材料具有良好的水溶性、抗光漂白性、耐盐性、较高的荧光量子产率,并在较宽pH值范围内具有较好的荧光稳定性。在360 nm激发波长下,FPONs的荧光强度在芦丁存在时明显猝灭,基于此建立了一种快速、灵敏的芦丁荧光分析测定方法。研究发现:芦丁与FPONs 的响应时间小于5 s,能够实现芦丁的快速检测;随着芦丁浓度的增加,相对荧光强度(
I
0
/
I)
与芦丁浓度呈良好的线性关系,线性范围为0~50 μmol/L,检出限(LOD)为0.016 μmol/L;荧光猝灭机理研究表明,该猝灭可能是由内滤效应和静态猝灭引起。FPONs成功用于实际水样中芦丁的检测,加标回收率为95.0%~100%,相对标准偏差不大于4.1%,具有可行性和适用性。
In order to achieve rapid,selective identification and quantitative detection of rutin,in this paper,the fluorescent polydopamine organic nanoparticles(FPONs) emitting blue fluorescence were prepared for rutin fluorescence analysis by a simple,green and low-cost method using folic acid and dopamine as precursors. FPONs have excellent water solubility,resistance to photobleaching,salt resistance,relatively high fluorescence quantum yield and good fluorescence stability in a wide pH range. Interestingly,at
the excitation wavelength of 360 nm,the fluorescence intensity of FPONs was obviously quenched in the presence of rutin,based on this,a fast and sensitive method for rutin determination was established. The results show that the response time of rutin to FPONs as short as 5 sec,indicating the rapid detection of rutin. With the increase of rutin concentration,the relative fluorescence intensity
I
0
/
I
showed a good linear relationship with the concentration of rutin with the linear range of 0-50 μmol/L,and the limit of detection(LOD) of 0.016 μmol/L. The mechanism of fluorescence quenching shows that the system may be caused by internal filtration effect and static quenching. Finally,the FPONs were successfully used to detect rutin in actual water samples,with the satisfied recoveries of 95.0%-100%,and the relative standard deviation≤4.1%,implying the feasibility and applicability of the method.
Yang J X , Guo J , Yuan J F . LWT-Food Sci. Technol. , 2008 , 41 ( 6 ): 1060 - 1066 .
Saha R , Patkar S , Pillai M M , Tayalia P . Biomater. Adv. , 2023 , 150 : 213432 - 213444 .
Liu Q S , Pan R , Ding L , Zhang F L , Hu L F , Ding B , Zhu L W S , Xia Y L , Dou X B . Int. Immunopharmacol. , 2017 , 49 : 132 - 141 .
Tomazelli L C , de Assis Ramos M M , Sauce R , Cândido T M , Sarruf F D , de Oliveira Pinto C A S , de Oliveira C A , Rosado C , Velasco M V R , Baby A R . Int. J. Pharm. , 2018 , 552 ( 1 ): 401 - 406 .
Morocho-Jácome A L , Freire T B , de Oliveira A C , de Almeida T S , Rosado C , Velasco M V R , Baby A R . J. Cosmet. Dermatol.-US , 2021 , 20 ( 3 ): 729 - 737 .
Sato S , Numata Y . J. Food Compos. Anal. , 2024 , 128 : 105991 - 105998 .
Tang J , Peng L C , Ali A , Zhao S Y , Zeng Z Y , Yuan K , Yao S . Food Control , 2024 , 155 : 110045 - 110058 .
Moreira G C , de Souza Dias F . Microchem. J. , 2018 , 141 : 247 - 252 .
Paczkowska M , Lewandowska K , Bednarski W , Mizera M , Podborska A , Krause A , Cielecka-Piontek J . Spectrochim. Acta A , 2015 , 140 : 132 - 139 .
Yeganeh-Salman E , Alinezhad H , Ghasemi S , Hasantabar V . Sens. Actuators A , 2024 , 374 : 115475 - 115486 .
Hou K X , Ding S , Yang K , Wang Z X , Li F . J. Instrum. Anal. (侯可心,丁晟,杨焜,王在玺,李钒.分析测试学报), 2024 , 43 ( 1 ): 1 - 18 .
Chen C C , Deng C H , Liu R Y , Chen L J . J. Instrum. Anal. (陈畅畅,邓崇海,刘仁勇,陈丽娟.分析测试学报), 2024 , 43 ( 2 ): 351 - 360 .
Chen L J , Chen C C , Yan Y H , Yang L L , Liu R Y , Zhang J J , Zhang X , Xie C G . Polymers , 2023 , 15 ( 8 ): 1892 - 1904 .
Huo X Y , Liu L Z , Bai Y F , Qin J , Yuan L , Feng F . Anal. Chim. Acta , 2022 , 1206 : 338685 - 338694 .
Li T T , Guo G Q , Xing H M , Wang Y R , Luo X Y , Wang L F , Gu C J , Hou Y F , Chen D . Anal. Chim. Acta , 2023 , 1239 : 340706 - 340715 .
Wang B Q , Gui R J , Jin H , He W J , Wang Z H . Talanta , 2018 , 178 : 1006 - 1010 .
Li D J , Wang N , Wang F F , Zhao Q . Anal. Methods , 2019 , 11 ( 25 ): 3212 - 3220 .
Yu L S , Zhang S Q , Xu H F , Wang L L , Zhu X , Chen X Z , Xu W , Xu W , Zhang H , Lin Y . Anal. Chim. Acta , 2020 , 1126 : 7 - 15 .
Cai Z F , Chen S Y , Ma X R , Na D , Zhao J , Wu T Q , Zhang C F . J . Photochem. Photobiol. A , 2021 , 405 : 112918 - 112925 .
Sasikumar T , Ilanchelian M . Luminescence , 2021 , 36 ( 2 ): 326 - 335 .
The Huy B , Thi Cam Huong L , Sharipov M , Bang Truong H , Lee Y I . Microchem. J. , 2024 , 200 : 110325 - 110333 .
Xie X L , Zhang Z , Xiong W , Wang J , Gong W , Xu W , Cai S , Li J . Arabian J. Chem. , 2024 , 17 ( 9 ): 105888 - 105897 .
Zhang S , Li J H , Huang S Y , Ma X R , Zhang C F . Chem. Pap. , 2021 , 75 ( 8 ): 3761 - 3769 .
Zhang W J , Liu S G , Han L , Ling Y , Liao L L , Mo S , Luo H Q , Li N B . Anal. Methods , 2018 , 10 ( 35 ): 4251 - 4256 .
Wang C Z , Wang X J , Zhang Y P , Tang Y H , Yang Y , Wang B , Wei S S , Wang Z B , Sun G Y . Food Chem. , 2023 , 406 : 134898 - 134906 .
Zu F L , Yan F Y , Bai Z J , Xu J X , Wang Y Y , Huang Y C , Zhou X G . Microchim. Acta , 2017 , 184 ( 7 ): 1899 - 1914 .
Fan Y , Yao J , Huang M K , Linghu C X , Guo J L , Li Y . Food Chem. , 2021 , 359 : 129962 - 129971 .
0
浏览量
74
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构