浏览全部资源
扫码关注微信
1.地震动力学与强震预测全国重点实验室(中国地震局地质研究所),北京 100029
2.华北科技学院 应急技术与管理学院,河北 三河 065201
3.中国矿业大学(北京) 深部岩土力学与地下工程国家重点实验室,北京 100083
4.中国科学院物理研究所,北京 100190
5.河北省多场景水害链生事故智慧应急技术创新中心, 河北 三河 065201
李德建,博士,教授,研究方向:岩爆、岩石力学,E-mail:ldj_cumtb@163.com
李英骏,博士,教授,研究方向:激光等离子体物理、光测力学,E-mail:li@aphxiphyac.smn
收稿日期:2024-08-18,
修回日期:2025-01-22,
录用日期:2025-01-26,
网络出版日期:2025-05-09,
纸质出版日期:2025-07-15
移动端阅览
沈沐傲,陈露,张鸣原,常龙飞,李德建,李英骏.基于中红外光谱技术的岩石分类研究[J].分析测试学报,2025,44(07):1273-1281.
SHEN Mu-ao,CHEN Lu,ZHANG Ming-yuan,CHANG Long-fei,LI De-jian,LI Ying-jun.The Study on Rock Classification Based on Mid-infrared Spectroscopy[J].Journal of Instrumental Analysis,2025,44(07):1273-1281.
沈沐傲,陈露,张鸣原,常龙飞,李德建,李英骏.基于中红外光谱技术的岩石分类研究[J].分析测试学报,2025,44(07):1273-1281. DOI: 10.12452/j.fxcsxb.240818320.
SHEN Mu-ao,CHEN Lu,ZHANG Ming-yuan,CHANG Long-fei,LI De-jian,LI Ying-jun.The Study on Rock Classification Based on Mid-infrared Spectroscopy[J].Journal of Instrumental Analysis,2025,44(07):1273-1281. DOI: 10.12452/j.fxcsxb.240818320.
该文对白砂岩、大理岩、泥岩和盐岩进行光谱采集,利用支持向量机法、BP神经网络法、分类回归决策树3种方法进行岩石分类,并通过准确率、召回率和Kappa系数量化比较模型的优劣性,以期获得最佳岩石分类光谱模型。结果表明,决策树模型分类精度最低仅为93.1%;而利用稀疏滤波结合BP神经网络的岩石分类模型效果最佳,分类准确率高达97.1%,Kappa系数为0.958。该研究可通过光谱测量方法快速识别岩石种类,从而为实际工程中不同岩石的灾害预防提供了重要的理论依据和实践应用价值。
The mechanical properties of rocks,such as strength and deformation,vary significantly,and different methods are employed for the development of underground resources and disaster prevention related to various rock types. Therefore,accurately identifying and classifying different rocks is crucial for addressing practical issues in geotechnical engineering. This study conducted spectral acquisition on white sandstone,marble,mudstone,and salt rock,employing three classification methods:support vector machine,back propagation(BP) neural network,and classification and regression decision Tree. The models were quantitatively compared based on accuracy,recall,and Kappa coefficient to assess their effectiveness,aiming to achieve the optimal spectral model for rock classification. The results showed that the decision tree model had the lowest classification accuracy at only 93.1%,in contrast,the rock classification model utilizing sparse filtering combined with the BP neural network yielded the best results,with a classification accuracy of 97.1% and a Kappa coefficient of 0.958. This research provides a significant theoretical foundation and practical value for quickly identifying rock types through spectral measurement methods,thereby enhancing disaster prevention strategies for different rock types in actual engineering applications.
Wang X L , Zhang X L , Zhou G M . J. Zhejiang A&F Univ . (王晓丽,张晓丽,周国民. 浙江农林大学学报), 2019 , 34 ( 6 ): 1008 - 1015 .
Zhang F , Hu Z L , Hou X L , Zhang X L , Fu C G , Li Y J , He M C . Spectrosc. Spectral Anal. (张芳,户佐乐,侯欣莉,张秀莲,付成功,李英骏,何满潮. 光谱学与光谱分析), 2019 , 39 ( 11 ): 3395 - 3402 .
Xu L J , Meng X Y , Wei R , Zhang K . Spectrosc. Spectral Anal. (徐良骥,孟雪莹,韦任,张坤. 光谱学与光谱分析), 2018 , 42 ( 7 ): 2135 - 2142 .
Bai L , Yao Y , Li S T , Xu D J , Wei X . China Min. Mag . (白林,姚钰,李双涛,徐东晶,魏昕. 中国矿业), 2018 , 27 ( 7 ): 178 - 182 .
Cao M C . Laser J .(曹妙聪. 激光杂志), 2020 , 41 ( 12 ): 18 - 21 .
Acquah G E , Via B K , Fasina O O , Eckhardt L G . J. Near Infrared Spectrosc. , 2015 , 23 ( 2 ): 93 - 102 .
Zhang W J , Jiao A R , Tian J , Wang X J , Wang B , Xu X X . J. Instrum. Anal. (张文杰,焦安然,田静,王晓娟,王斌,徐晓轩. 分析测试学报), 2021 , 40 ( 7 ): 1062 - 1067 .
Ghaedi A M , Baneshi M M , Vafaei A , Eckhardt L G . Environ. Technol. Innovation , 2018 , 11 : 262 - 275 .
Fu H R , Liu G N , Wei X , Zhang X Y . Arid Land Geogr . 傅海荣 , 刘耕年 , 魏遐 , 张小咏 . 干旱区地理) , 2005 ,( 4 ): 13 - 18 .
Luo X W , Yao H L . Rock Soil Mech . (骆行文 ,姚海林. 岩土力学), 2010 , 31 ( S2 ): 452 - 455 .
Zhao K J , Chi E A , Zhao M S , Wang S W , Ouyang T Y , Lei Z , Zheng H Y . Blasting (赵珂劼,池恩安,赵明生,汪帅文,欧阳天云,雷振,郑海涯. 爆破), 2019 , 36 ( 3 ): 50 - 55 .
Huang Z M , Zeng W D , Wu M , Xia Z P . Laser J . (黄忠民,曾万聃,吴敏,夏志平. 激光杂志), 2022 , 43 ( 9 ): 55 - 59 .
Qiao M Y , Tang X X , Yan S H , Shi J K . J. Zhejiang Univ. Eng. Sci. (乔美英,汤夏夏,闫书豪,史建柯. 浙江大学学报:工学版), 2020 , 54 ( 12 ): 2301 - 2309,2422 .
Ma W Q , Zhang M , Li Z X . Trans. Chin. Soc. Agric. Mach. (马文强,张漫,李忠新 . 农业机械学报) , 2015 , 46 ( S1 ): 128 - 133 .
Feng G H , Zhu Y J , Li Y X . Spectrosc. Spectral Anal. (冯国红,朱玉杰,李耀翔. 光谱学与光谱分析), 2020 , 40 ( 7 ): 2128 - 2132 .
Luo L C , Deng H , Liu Q C , Chen L Y , Li Z F . Acta Opt. Sin . (罗力川,邓琥,刘泉澄,陈林宇,李占锋. 光学学报), 2021 , 41 ( 11 ): 224 - 233 .
Wei R , Xu L J , Meng X Y , Wu J F , Zhang K . Spectrosc. Spectral Anal. (韦任,徐良骥,孟雪莹,吴剑飞,张坤. 光谱学与光谱分析), 2021 , 41 ( 6 ): 1942 - 1948 .
Shi X P , Hu Q X , Xie Z W , Yang C D , Zhou L H , Sun D Q , Lü C , Jia Z B , Zhao Z . Nat. Gas Geosci. (石新朴,胡清雄,解志薇,杨朝栋,周隶华,孙德强,吕灿,贾智彬,赵振. 天然气地球科学), 2016 , 27 ( 10 ): 1808 - 1816 .
Li C S , Chen Y Y , Sun W . J. China Univ. Pet . Ed. Nat. Sci. (李春山,陈英毅,孙卫. 中国石油大学学报:自然科学版), 2011 , 35 ( 6 ): 66 - 70 .
Ngiam J , Koh P W , Chen Z , Bhaskar S , Ng A Y . Proceedings of the 24th International Conference on Neural Information Processing Systems,2011,Granada,Spain . Red Hook,NY,USA : Curran Associates Inc. , 2011 : 1125 - 1133 .
Chen B , Zheng X H , Geng D C , Qi W L , Lu D L . J. Instrum. Anal. (陈斌,郑小欢,耿德春,齐文良,陆道礼. 分析测试学报), 2023 , 42 ( 3 ): 323 - 329 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构