浏览全部资源
扫码关注微信
广东省生态环境监测中心,广东 广州 510308
王中伟,博士,高级工程师,研究方向:金属同位素环境污染溯源,E-mail:yeswangzhongwei@163.com
纸质出版日期:2025-01-15,
收稿日期:2024-08-08,
修回日期:2024-08-28,
移动端阅览
黄国锋,王中伟,谢志宜,刘军,陈多宏.高精度铅同位素比值MC-ICP-MS测试方法及土壤标准物质铅同位素组成[J].分析测试学报,2025,44(01):116-125.
HUANG Guo-feng,WANG Zhong-wei,XIE Zhi-yi,LIU Jun,CHEN Duo-hong.High Precision Analysis of Pb Isotope Ratios Using MC-ICP-MS and the Pb Isotope Compositions of Soil Standard Materials[J].Journal of Instrumental Analysis,2025,44(01):116-125.
黄国锋,王中伟,谢志宜,刘军,陈多宏.高精度铅同位素比值MC-ICP-MS测试方法及土壤标准物质铅同位素组成[J].分析测试学报,2025,44(01):116-125. DOI: 10.12452/j.fxcsxb.240808288.
HUANG Guo-feng,WANG Zhong-wei,XIE Zhi-yi,LIU Jun,CHEN Duo-hong.High Precision Analysis of Pb Isotope Ratios Using MC-ICP-MS and the Pb Isotope Compositions of Soil Standard Materials[J].Journal of Instrumental Analysis,2025,44(01):116-125. DOI: 10.12452/j.fxcsxb.240808288.
利用多接收电感耦合等离子体质谱仪(MC-ICP-MS)精准测定了国家土壤标准物质的铅同位素比值,研究了MC-ICP-MS测定铅同位素时的分馏效应,发现仪器存在非质量分馏效应,应用Baxter法和标准与实际样品的交叉组合法(SSB)校正仪器的质量和非质量分馏,校正后NIST SRM 981标准溶液的铅同位素比值具有较高的准确度和精确度。采用MC-ICP-MS测定了3个国家土壤标准物(GBW07564、GBW07406a、GBW07980)的铅同位素比值。对土壤进行微波消解和纯化,回收率大于98%,全流程空白小于0.22 ng。GBW07564铅同位素的
206
Pb/
204
Pb为19.960 3±0.030 3、
207
Pb/
204
Pb为15.767 5±0.006 1、
208
Pb/
204
Pb为39.086 8±0.026 4(
n
=9,2SD);GBW07 406a铅同位素的
206
Pb/
204
Pb为18.802 4±0.001 8、
207
Pb/
204
Pb为15.744 2±0.002 5、
208
Pb/
204
Pb为39.194 3±0.008 6(
n
=9,2SD);GBW07 980铅同位素的
206
Pb/
204
Pb为18.614 2±0.005 7、
207
Pb/
204
Pb为15.737 8±0.004 4、
208
Pb/
204
Pb为38.962 9±0.015 3(
n
=9,2SD)。这些土壤标准物质的
206
Pb/
207
Pb分别为1.265 9±0.001 4、1.194 2±0.000 1、1.182 8±0.000 1(
n
=9,2SD),
208
Pb/
206
Pb分别为1.958 2±0.001 8、2.084 5±0.000 3、2.093 2±0.000 2(
n
=9,2SD),大致在自然界土壤铅同位素
206
Pb/
207
Pb(大于1.17)、
208
Pb/
206
Pb(小于2.11)变化范围内,且容易获得,化学和铅同位素组成均一,适合作为监控土壤铅同位素化学及质谱分析数据可靠性的同位素土壤标准物质。
Lead isotope ratios for national soil reference materials was accurately determinated by using multiple collectors inductively coupled plasma mass spectrometry(MC-ICP-MS). The fractionation properties of MC-ICP-MS in the determination of lead
isotope was studied,which exhibits mass-independent fractionation. The Baxter and the standard-sample bracketing(SSB) method were used to corrected the mass-dependent fractionation and mass-independent fractionation in the instrument.The lead isotope ratio of the NIST SRM 981 standard solution which was corrected has high accuracy and precision. The lead isotope ratio of three national soil reference materials(GBW07564,GBW07406a,GBW07980) were determined using MC-ICP-MS,and the soil was digested by microwave and purified. The recovery was more than 98%,and the blank of the whole process was less than 0.22 ng. The lead isotope ratio of GBW07564 is 19.960 3±0.030 3 for
206
Pb/
204
Pb,15.767 5±0.006 1 for
207
Pb/
204
Pb,and 39.086 8±0.026 4 for
208
Pb/
204
Pb(
n
=9,2SD);the lead isotope ratio of GBW07 406a is 18.802 4±0.001 8 for
206
Pb/
204
Pb,15.744 2±0.002 5 for
207
Pb/
204
Pb,and 39.194 3±0.008 6 for
208
Pb/
204
Pb(
n
=9,2SD);the lead isotope ratio of GBW07 980 is 18.614 2±0.005 7 for
206
Pb/
204
Pb,15.737 8±0.004 4 for
207
Pb/
204
Pb,and 38.962 9±0.015 3 for
208
Pb/
204
Pb(
n
=9,2SD). The
206
Pb/
207
Pb of these soil reference materials are 1.265 9±0.001 4,1.194 2±0.000 1,1.182 8±0.000 1(
n
=9,2SD),and the
208
Pb/
206
Pb are 1.958 2±0.001 8,2.084 5±0.000 3,2.093 2±0.000 2(
n
= 9,2 SD),respectively. These values are roughly within the range of natural soil lead isotopes
206
Pb/
207
Pb(more than 1.17) and
208
Pb/
206
Pb(less than 2.11). These samples are easily obtainable,and their chemical and lead isotope compositions are uniform,making them suitable as isotope soil reference materials for monitoring the reliability of soil lead isotope chemistry and mass spectrometry analysis data.
土壤标准物质铅同位素多接收电感耦合等离子体质谱(MC-ICP-MS)Baxter法标准与实际样品的交叉组合法(SSB)非质量分馏
soil reference materialslead isotopesMC-ICP-MSBaxterthe standard-sample bracketing(SSB) methodmass-independent fractionation
Zheng J J,Huynh T,Gasparon M,Ng J,Noller B. Environ. Sci. Pollut. Res.,2013,20(12):8404-8416.
Olufemi A C,Mji A,Mukhola M S. Int. J. Environ. Res. Public Health,2022,19(23):16006.
Raj K,Das A P. Environ. Chem. Ecotoxicol.,2023,5:79-85.
Das R,Mohtar A,Rakshit D,Shome D,Wang X F. Atmos. Environ.,2018,193:57-65.
Tao Z H,Guo Q J,Wei R F,Dong X Y,Han X K,Guo Z B. Sci. Total Environ.,2021,778:145810.
Cong L,Zhou S J,Niyogi D,Wu Y A,Yan G X,Dai L Y,Liu S Y,Zhang Z M,Hu Y H. J. Anal. At. Spectrom.,2022,311:114771.
Child A W,Moore B C,Vervoort J D,Beutel M W. Environ. Pollut.,2018,238:348-358.
Li M L,Weis D,Smith K E,Shiel A E,Smith W D,Hunt B,Torchinsky A,Pakhomov E A. Anthropocene,2020,29:100234.
Babos H B,Black S,Pluskowski A,Brown A,Rohrssen M,Chappaz A. Sci. Total Environ.,2019,683:589-599.
Peng B,Chen H S,Fang X H,Xie S R,Wu S C,Jiang C X,Dai Y A. Sci. Total Environ.,2022,829:154394.
Li C F,Chu Z Y,Peng P. Talanta,2023,257:124390.
Rodríguez-Salazar M T,Bermea O M,Hernández-Alvarez E,García-Arreola M E,Ortuño-Arzate M T. Geofis. Int.,2010,49(3):113-117.
Bao Z A,Yuan H L,Zong C L,Liu Y,Chen K Y,Zhang Y L. J. Anal. At. Spectrom.,2016,31(4):1012-1022.
Liu X J,Wang G Q,Castillo P R,Xu J F,Huang F,Yu H X,Chen L. J. Geochim. (刘希军,王桂琴,Castillo P R,许继峰,黄丰,余红霞,陈玲. 地球化学),2013,42(2):103-115.
Lu S S,Tong X R,Tan J J,Qiu X F,Yang H M. J. Geol. Bull. China(卢山松,童喜润,谭娟娟,邱啸飞,杨红梅. 地质通报),2023,42(9):1516-1530.
Li C F,Wang X C,Guo J H,Chu Z Y,Feng L J. J. Anal. At. Spectrom.,2016,31(5):1150-1159.
Jeong H,Ra K,Choi J Y. Geostand. Geoanal. Res.,2021,45(3):551-563.
Takagi M,Yoshinaga J,Tanaka A,Seyama H. Anal. Sci.,2011,27(1):29-35.
Karasiński J,Bulska E,Halicz L,Tupys A,Wagner B. J. Anal. At. Spectrom.,2023,38(11):2468-2476.
Kamenov G D,Swaringen B F,Cornwell D A,Mctigue N E,Roberts S M,Bonzongo J J. Sci. Total Environ.,2023,871:162067.
Griffiths A,Packman H,Leung Y,Coles B J,Kreissig K,Little S H,van de Flierdt T,Rehkämper M. Anal. Chem.,2020,92(16):11232-11241.
Yang L. Mass Spectrom. Rev.,2009,28(6):990-1011.
Yang L,Tong S Y,Zhou L,Hu Z C,Mester Z,Meija J. J. Anal. At. Spectrom.,2018,33(11):1849-1861.
Tong S Y. Mass Independent Fractionation Correction for Measurements by MC-ICP MS:Case Studies on Hf,Pb,Cr Isotopes.Wuhan:China University of Geosciences(童铄云. MC-ICP MS测定过程中非质量分馏校正的研究. 武汉:中国地质大学),2019.
Newman K,Freedman P A,Williams J,Belshaw N S,Halliday A N. J. Anal. At. Spectrom.,2009,24(6):742-751.
Newman K. J. Anal. At. Spectrom.,2012,27(1):63-70.
Albarède F,Telouk P,Blichert-Toft J,Boyet M,Agranier A,Nelson B. Geochim. Cosmochim. Acta,2004,68(12):2725-2744.
Zhao Y,Yang W B,Leng C B. J. Anal. At. Spectrom.,2023,38(4):785-791.
Zhang R X,Meija J,Huang Y,Pei X J,Mester Z,Yang L. Anal. Chim. Acta,2019,1089:19-24.
Yang L,Mester Z,Zhou L,Gao S,Sturgeon R E,Meija J. Anal. Chem. (Washington),2011,83(23):8999-9004.
Qi J J,Yu H X,Xu Q H,Yuan Y H,Yang F,Zhang H P. Rock Mine. Anal.(柒锦捷,余红霞,徐庆鸿,袁永海,杨锋,张惠评. 岩矿测试),2024,43(2):213-223.
Russell W A,Papanastassiou D A,Tombrello T A. Geochim. et Cosmochim. Acta,1978,42(8):1075-1090.
Andrén H,Rodushkin I,Stenberg A,Malinovsky D,Baxter D C. J. Anal. At. Spectrom.,2004,19(9):1217-1224.
Zhu Z H,Meija J,Tong S Y,Zheng A R,Zhou L,Yang L. Anal. Chem.,2018,90(15):9281-9288.
Rua-Ibarz A,Bolea-Fernandez E,Vanhaecke F. Anal. Bioanal. Chem.,2016,408(2):417-429.
Baxter D C,Rodushkin I,Engström E,Malinovsky D. J. Anal. At. Spectrom.,2006,21(4):427-430.
Galer S J G,Abouchami W. Mineral. Mag.,1998:491-492.
Weis D,Kieffer B,Maerschalk C,Pretorius W,Barling J. Geochem. Geophys. Geosyst.,2005,6(2):Q02002.
Thirlwall M F. Chem. Geol.,2002,184(3):255-279.
Gallon C,Aggarwal J,Flegal A R. Anal. Chem.,2008,80(22):8355-8363.
Chernyshev I V,Chugaev A V,Shatagin K N. Geochem. Int.,2007,45(11):1065-1076.
Kuritani T,Nakamura E. J. Anal. At. Spectrom.,2003,18(12):1464-1470.
Makishima A,Nath B N,Nakamura E. J. Anal. At. Spectrom.,2007,22(4):407-410.
Hoernle K,Hauff F,Kokfelt T F,Haase K,Garbe-Schönberg D,Werner R. Earth Planet. Sci. Lett.,2011,306(1/2):86-97.
Thirlwall M F. Chem. Geol.,2000,163(1):299-322.
Barling J,Weis D. J. Anal. At. Spectrom.,2008,23(7):1017-1025.
Baker J,Peate D,Waight T,Meyzen C. Chem. Geol.,2004,211(3/4):275-303.
HJ 832-2017. Soil and Sediment-Digestion of Total Metal Elements-Microwave Assisted Acid Digestion Method. Ecological Environment Standards of the People's Republic of China(土壤和沉积物 金属元素总量的消解 微波消解法. 中华人民共和国生态环境标准).
Woodhead J D,Hergt J M. Geostand. Newslett.,2000,24(1):33-38.
Todd E,Stracke A,Scherer E E. Geochem. Geophys. Geosyst.,2015,16(7):2276-2302.
Collerson K D,Kamber B S,Schoenberg R. Chem. Geol.,2002,188(1/2):65-83.
Li C F,Chu Z Y,Guo J H,Li Y L,Yang Y H,Li X H. Anal. Methods,2015,7(11):4793-4802.
Li S Z,Ma J X,Zhu X K,Tang S H. J. Acta Petrol. et Mineral. (李世珍,马健雄,朱祥坤,唐索寒. 岩石矿物学杂志),2015,34(5):785-792.
Liu W,Li D D,Liu S A. Rock Mine. Anal.(刘婉,李丹丹,刘盛遨. 岩矿测试),2021,40(4):561-569.
Tyszka R,Pietranik A,Kierczak J,Ettler V,Mihaljevic M,Weber J. Appl. Geochem.,2012,27(6):1089-1100.
Yu E J,Liu H Y,Dinis F,Zhang Q Y,Jing P,Liu F,Ju X H. Int. J. Environ. Res. Public Health,2022,19(19):12478.
Ji H B,Wang S J. Geol. Rev.(季宏兵,王世杰. 地质论评),2011,57(1):109-117.
Özen Y. Environ. Earth Sci.,2022,81(10):285.
Desem C U,Maas R,Woodhead J,Carr G,Greig A. Appl. Geochem.,2022,143:105361.
0
浏览量
83
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构