浏览全部资源
扫码关注微信
1.西南大学 化学化工学院,重庆 400715
2.西南大学 分析测试中心,重庆 400715
徐岚,博士,教授,研究方向:具有化学传感功能的聚合物材料合成及在化学传感器中的应用,E-mail:xulan@swu.edu.cn
收稿日期:2024-08-01,
修回日期:2024-09-13,
录用日期:2024-10-08,
纸质出版日期:2025-04-15
移动端阅览
谭小雨,李会亚,徐岚.凝胶渗透色谱与多角度静态激光光散射联用技术测定棉花纤维素分子量[J].分析测试学报,2025,44(04):696-701.
TAN Xiao-yu,LI Hui-ya,XU Lan.Determination of Molecular Weight of Cotton Cellulose by Gel Permeation Chromatography Coupled with Multi-angle Static Laser Light Scattering[J].Journal of Instrumental Analysis,2025,44(04):696-701.
谭小雨,李会亚,徐岚.凝胶渗透色谱与多角度静态激光光散射联用技术测定棉花纤维素分子量[J].分析测试学报,2025,44(04):696-701. DOI: 10.12452/j.fxcsxb.240801271.
TAN Xiao-yu,LI Hui-ya,XU Lan.Determination of Molecular Weight of Cotton Cellulose by Gel Permeation Chromatography Coupled with Multi-angle Static Laser Light Scattering[J].Journal of Instrumental Analysis,2025,44(04):696-701. DOI: 10.12452/j.fxcsxb.240801271.
该文建立了一种用离子液体作促溶剂,凝胶渗透色谱与多角度静态激光光散射联用技术(GPC-MALS)检测棉花纤维素分子量的方法。棉花样品经NaOH处理后,以离子液体作促溶剂,N,N-二甲基乙酰胺(DMAc)作溶剂进行溶解。通过比较4种离子液体的溶解效果,发现1-丁基-3-甲基咪唑乙酸(BmimAc)的效果最好。使用BmimAc/DMAc溶剂体系,在不同温度下溶解棉花,结果表明,50~80 ℃下溶解后测得的分子量结果接近,且不确定度低,结果可靠。以BmimAc为添加剂,DMAc为助溶剂,DMAc和0.1 mol/L无水LiBr为流动相,采用GPC-MALS实现了对棉花纤维素分子量的绝对测定和分布分析,为纤维素分子量的检测提供了实验参考,为棉花纤维素的有效利用提供了依据。
An analytical method was developed to detect the molecular weight of cotton cellulose. This method uses gel permeation chromatography coupled with multi-angle static laser light scattering(GPC-MALS) and adds ionic liquid to dissolve the cotton. The separation of GPC does not require high mobile phase,no gradient drenching,simple experimental operation,good reproducibility,fast test speed,and has many features that other chromatography does not have. MALS measures the light scattering intensity of the sample at each angle. The sample is separated by the column. The RI detector measures the concentration of the eluent. This allows the molecular weights of individual slices to be calculated. By combining GPC and MALS,it not only separates different sets of fractions,but also measures the root-mean-square radius,molecular weights and their distributions of different sets of fractions,and does not require standard samples and standard curves. Therefore,it is widely used in the fields of macromolecular research,biochemistry and reaction kinetics. After the samples were treated with NaOH base,cotton cellulose was dissolved by adding N,N-dimethylacetamide(DMAc) to 1-butyl-3-methylimidazolium acetate(BmimAc) ionic liquid,and then the ionic liquid type test was changed,and af
ter comparing the four ionic liquids methods for dissolving cotton cellulose,it was concluded that BmimAc ionic liquid was the most effective. Various temperatures were also tried to dissolve cotton cellulose,and the dissolved solution was passed through 0.22 μm PTFE filters and then used directly for GPC-MALS to detect its molecular weight. The results showed that cotton cellulose still could not be dissolved at 40 ℃ for a long time; the time needed to dissolve cotton cellulose gradually decreased from 50 ℃ to 80 ℃,and the molecular weight was about 2.2×10
4
,and the inaccuracies were all within 5%,so the results were reliable; the molecular weight of cotton cellulose dissolved at 90 ℃ was 6.634×10
4
,thermal glycosylation at the reducing end is suggested to occur under the neat pyrolysis conditions. The molecular weight distribution of the cellulose was slightly shifted to the high molecular weight region after heat treatment. In summary,the new method for the detection of molecular weight of cotton cellulose by multi-angle laser light scattering coupled with gel permeation chromatography using BmimAc as an additive has the advantages of simple preparation,mild dissolution conditions,high detection precision,fast detection and low consumption,which overcomes the problems of traditional methods,such as the inability to measure absolute molecular weight and the difficulty of finding structurally similar standards.
Xie Y Y , Chai Y , Zhang P Y . Chem . Bull. (谢妍妍,柴云,张普玉. 化学通报), 2020 , 83 ( 12 ): 1104 - 1112 .
Zhang S J , Liu Y R , Nie Y . J. Light Ind . (张锁江,刘艳荣,聂毅. 轻工学报), 2016 , 31 ( 2 ): 1 - 14 .
Zhou Y , Cheng Y H , Mi Q Y , Zhang X C , Zhang J M , Zhang J . Anal. Chem. , 2022 , 94 ( 13 ): 5432 - 5440 .
Enomoto-Rogers Y , Kamitakahara H , Yoshinaga A , Takano T . Cellulose , 2011 , 18 : 929 - 936 .
Münster L , Fojtů M , Capáková Z , Vaculovič T , Tvrdoňová M , Kuřitka I , Masařík M , Vícha J . Biomacromolecules , 2019 , 20 ( 4 ): 1623 - 1634 .
Swatloski R P , Spear S K , Holbrey J D , Rogers R D . J. Am. Chem. Soc. , 2002 , 124 ( 18 ): 4974 - 4975 .
Zhang H , Wu J , Zhang J , He J S . Macromolecules , 2005 , 38 ( 20 ): 8272 - 8277 .
Xu A R , Zhang Y J , Zhao Y , Wang J J . Carbohydr. Polym. , 2013 , 92 ( 1 ): 540 - 544 .
Mansour F R , Zhou L , Danielson N D . Chromatographia , 2015 , 78 ( 23 ): 1427 - 1442 .
Fekete S , Beck A , Veuthey J L , Guillarme D . J. Pharm. Biomed. Anal. , 2014 , 101 : 161 - 173 .
Blanco M , Sanz N , Sánzhez A C , Correa B , Pérez-Martín R I , Sotelo C G . Int. J. Mol. Sci. , 2022 , 23 ( 1 ): 32 .
Peng J , Shi Y P , Liu Y , Shen Y , Liu L L , Chen F . Phys. Test. Chem. Anal.:Chem. Anal. (彭健,施燕平,刘叶,沈永,刘莉莉,陈方. 理化检验-化学分册), 2022 , 58 ( 11 ): 1283 - 1286 .
Shakun M , Maier H , Heinze T , Kilz P , Radke W . Carbohydr. Polym. , 2013 , 95 ( 1 ): 550 - 559 .
Zhou Y , Zhang X C , Zhang J M , Cheng Y H , Wu J , Yu J , Zhang J . Polym. Test. , 2021 , 93 : 106985 .
Guo C , Shi S W , Dai H L , Lu F , Chen X . J. Mater. Eng. Perform. , 2024 , 33 ( 7 ): 3207 - 3220 .
Li H Y , Dong C F , Xiao K , Li X G , Zhong P . Int . J. Mine. Metall. Mater. , 2016 , 23 ( 11 ): 1286 - 1293 .
Maraghechi S , Dupont A-L , Cardinaels R , Paris-Lacombe S , Hoefnagels J P M , Suiker A S J , Bosco E . Heritage Sci. , 2023 , 11 ( 1 ): 15 .
Masuelli M A . J. Polym . Biopolym. Phys. Chem. , 2018 , 6 ( 1 ): 13 - 25 .
Minnick D L , Flores R A , DeStefano M R , Scurto A M . J. Phys. Chem. B , 2016 , 120 ( 32 ): 7906 - 7919 .
Zhang J M , Wu J , Yu J , Zhang X Y , He J S , Zhang J . Mater. Chem. Front. , 2017 , 1 ( 7 ): 1273 - 1290 .
Rabideau B D , Agarwal A , Ismail A E . J. Phys. Chem. B , 2013 , 117 ( 13 ): 3469 - 3479 .
Yue Y Y , Han G P , Wu Q L . Bioresources , 2013 , 8 : 6460 - 6471 .
Liyanage S , Abidi N . Textile Res . J. , 2018 , 89 ( 5 ): 726 - 738 .
Matsuoka S , Kawamoto H , Saka S . Carbohydr. Res. , 2011 , 346 ( 2 ): 272 - 279 .
0
浏览量
41
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构