浏览全部资源
扫码关注微信
中国刑事警察学院 刑事科学技术学院,辽宁 沈阳 110854
杜宇,博士,副教授,研究方向:法医病理学,法医学,E-mail:1160740587@qq.com
收稿日期:2024-07-25,
修回日期:2024-08-17,
录用日期:2024-09-10,
纸质出版日期:2025-03-15
移动端阅览
丁海媛,杜宇,李昊洋,郑丽娜,张金建.基于可解释机器学习的SD大鼠溺液温度与血液生化指标变化预测模型的研究[J].分析测试学报,2025,44(03):420-428.
DING Hai-yuan,DU Yu,LI Hao-yang,ZHENG Li-na,ZHANG Jin-jian.Research on a Prediction Model of Temperature of Drowning Fluid and Blood Biochemical Indicators in SD Rats Based on Interpretable Machine Learning[J].Journal of Instrumental Analysis,2025,44(03):420-428.
丁海媛,杜宇,李昊洋,郑丽娜,张金建.基于可解释机器学习的SD大鼠溺液温度与血液生化指标变化预测模型的研究[J].分析测试学报,2025,44(03):420-428. DOI: 10.12452/j.fxcsxb.240725253.
DING Hai-yuan,DU Yu,LI Hao-yang,ZHENG Li-na,ZHANG Jin-jian.Research on a Prediction Model of Temperature of Drowning Fluid and Blood Biochemical Indicators in SD Rats Based on Interpretable Machine Learning[J].Journal of Instrumental Analysis,2025,44(03):420-428. DOI: 10.12452/j.fxcsxb.240725253.
为提高使用血液生化指标推断溺液温度的准确性,该研究使用溺死SD大鼠新鲜心血进行生化检验,利用统计检验和机器学习构建了溺液温度与血液生化指标的回归模型。通过测定血液的14种生化指标,对数据进行正态性检验、方差齐性检验、方差检验、事后检验和相关性分析,并使用K-最近邻回归(KNN)模型筛选重要特征指标,进行基准测试和建立回归模型,最后对模型进行调参、评估和解释。结果显示,14种生化指标在不同温度下均符合正态分布、其组内均值存在显著差异(
p
<
0.05),有18.6%的组两两比较差异不显著;各个指标之间的共线性程度较低(
<
70%);回归模型筛选出碱性磷酸酶(ALP)、谷氨酰转肽酶(GGT)、肌酐(Cr)、尿酸(UA)、尿素(UREA)、高密度脂蛋白胆固醇(HDL_C)、胆固醇(CHO)、甘油三酯(TG)、Ca
2+
和Mg
2+
10种生化指标,以其为特征变量建立的KNN回归模型经过超参数调优后测试集的均方根误差(RMSE)为1.872,决定系数(
R
2
)为 0.979 2,Mg
2+
、TG、ALP三个指标特征对模型的影响最大,且均为负作用。与传统的回归模型相比,该研究建立的回归模型能够充分利用样本数据,数据前处理简单、准确性高、可解释性好,适合溺液温度的推断。
To enhance the accuracy of inferring drowning fluid temperature using blood biochemical indicators,this study conducted biochemical tests on fresh cardiac blood samples from SD rats subjected to drowning. Statistical tests and machine learning were employed to develop regression models linking drowning fluid temperature to blood biochemical markers. A total of 250 male rats were randomly divided into four experimental groups(based on water temperature during drowning):cold water drowning(8-10 ℃),normal temperature drowning(20-22 ℃),warm water drowning(30 ℃),and hot water drowning(45 ℃),along with a control group(cervical dislocation,
n
=50 per group). Rats in the experimental groups were individually immersed in pre-adjusted water tanks until drowning occurred. Immediately after
death,the chest cavity of each rat was opened,and approximately 2 mL of right heart blood was rapidly collected. Blood samples were left to stand at room temperature for 1.5 hours before serum supernatant was separated by centrifugation(2 500 r/min for 10 minutes at 4 ℃) and transferred to labeled EP tubes. From each tube,200 μL of serum was extracted into a dedicated serum cup for biochemical analysis.Using the Chinese Inova DS-401 automated biochemical analyzer,14 biochemical markers were tested in the samples:alanine aminotransferase(ALT),aspartate aminotransferase(AST),alkaline phosphatase(ALP),gamma-glutamyl transferase(GGT),creatinine(Cr),uric acid(UA),urea,glucose(GLU),high-density lipoprotein cholesterol(HDL_C),low-density lipoprotein cholesterol(LDL_C),cholesterol(CHO),triglycerides(TG),calcium ion(Ca
2+
),and magnesium ion(Mg
2+
). Normality,homogeneity of variance,ANOVA,post-hoc tests,and correlation analyses were performed on the 14 biochemical indicators. KNN regression models were then utilized to screen critical features,benchmark tests were conducted,regression models were established,and finally,model tuning,evaluation,and interpretation were performed.Results showed that all 14 biochemical indicators conformed to normal distribution across different temperature groups,with significant differences in mean values within groups(
p
<
0.05),albeit 18.6% of pairwise comparisons exhibited non-significant differences. Low collinearity(
<
70%) was observed among indicators. The regression model selected ALP,GGT,Cr,urea,UA,HDL_C,CHO,TG,Ca
2+
,and Mg
2+
as the 10 most important biochemical markers. The KNN regression model built with these variables,after hyperparameter optimization,achieved RMSE=1.872 and
R
2
=0.979 2 on the test set,with Mg
2+
,TG,and ALP having the greatest negative impact on the model. Compared to traditional regression models,the model established in this study fully leverages sample data,offerin
g simplicity in data preprocessing,high accuracy,and good interpretability,making it suitable for inferring drowning fluid temperature.
Girela-López E , Beltran-Aroca C M , Dye A , Gill J . Forensic Sci. Int. , 2022 , 330 : 111137 .
World Health Organization . Global Report on Drowning:Preventing a Leading Killer . Geneva : World Health Organization . [ 2024-07-19 ]. https://iris.who.int/handle/10665/143893 https://iris.who.int/handle/10665/143893 .
Zhu B L , Cao Z P . Forensic Med. (朱宝利,曹志鹏. 法医学杂志), 2021 , 37 ( 6 ): 859 - 866 .
Ishigami A , Kashiwagi M , Ishida Y , Hara K , Nosaka M , Matsusue A , Yamamoto H , Waters B , Kondo T , Kubo S . Sci. Rep. , 2021 , 11 ( 1 ): 21528 .
Kodama S , Hata J , Kanawaku Y . Legal Med.-Tokyo , 2021 , 49 : 101836 .
Zhang W , Zheng J L . Forensic Med. (张巍,郑吉龙. 法医学杂志), 2017 , 33 ( 1 ): 42 - 47 .
Ai M , Cheng J D , Hu S L , Kang X D , Liu C , Shi H , Xu L W , Xu Q Y , Yang X Y , Zhao J . Forensic Med. (艾梅,成建定,胡孙林,康晓东,刘超,石河,徐伦武,徐曲毅,杨幸怡,赵建. 法医学杂志), 2018 , 34 ( 1 ): 55 - 59 .
Cong B , Liu C . Forensic Med .(丛斌,刘超. 法医学杂志), 2022 , 38 ( 1 ): 3 - 13 .
Liu C , Xu Q Y , Zhao J . Forensic Med .(刘超,徐曲毅,赵建. 法医学杂志), 2022 , 38 ( 1 ): 1 - 2 .
Chen Y J , Deng K F , Han S Q , Huang P , Li Z D , Liu N G , Qin Z Q , Shao Y , Zou D H , Zhang J H . Forensic Med. (陈忆九,邓恺飞,韩顺琪,黄平,李正东,刘宁国,秦志强,邵煜,邹冬华,张建华. 法医学杂志), 2015 , 31 ( 4 ): 287 - 292,297 .
Deng K F , Li S Y , Qin Z Q , Liu N G , Zou D H , Chen Y J , Huang P . Forensic Med. (邓恺飞,黎世莹,秦志强,刘宁国,邹冬华,陈忆九,黄平. 法医学杂志), 2013 , 6 ( 29 ): 405 - 408 .
Yajima D , Inokuchi G , Makino Y , Motomura A , Chiba F , Torimitsu S , Yamaguchi R , Hoshioka Y , Malakiene D , Raudys R , Iwase H . Forensic Sci. Int. , 2018 , 284 : 219 - 225 .
Barranco R , Castiglioni C , Ventura F , Fracasso T . Int. J. Legal Med. , 2019 , 133 ( 5 ): 1461 - 1467 .
Legaz I , Barrera-Pérez E , Prieto-Bonete G , Pérez-Martínez C , Sibón A , Maurandi-López A , Pérez-Cárceles M D . Forensic Sci. Int. , 2021 , 323 : 110815 .
Barranco R , Castiglioni C , Ventura F , Fracasso T . Forensic Sci. Int. , 2019 , 298 : 157 - 160 .
Demirci T , Sener M T , Sahpaz A , Sener E , Kok A N . Am. J. Forensic Med. Path. , 2020 , 41 ( 2 ): 104 - 109 .
Yajima D , Saito H , Sato K , Hayakawa M , Iwase H . Forensic Sci. Int. , 2013 , 233 ( 1/3 ): 167 - 173 .
Deliligka A , Raikos N , Chatzinikolaou F , Venizelos I , Chatzopoulos K , Goulas A . Legal Med. , 2016 , 23 : 30 - 33 .
Paulis M G , Hasan E I . Am. J. Forensic Med. Path. , 2018 , 39 ( 3 ): 263 - 241 .
Hu C F , Li S D , Liu X H , Ma H , Qi J N , Shao L S , Xi J N , Xu K . J . Clin. Radiol. (胡春峰,李绍东,刘小华,马红,戚建宁,肖立顺,席建宁,徐凯. 临床放射学杂志), 2024 , 43 ( 7 ): 1066 - 1072 .
Lü W , Ru L H , Wang X Q , Zhang Z J . J. Instrum. Anal. (吕伟,茹立华,王祥麒,张志娟. 分析测试学报), 2023 , 42 ( 3 ): 275 - 282 .
Lang M , Binder M , Richter J , Schratz P , Pfisterer F , Coors S , Au Q , Casalicchio G , Kotthof L , Bischl B . J. Open Source Softw , 2019 , 4 ( 44 ): 1903 .
Jakubeniene M , Irnius A , Chaker G A , Paliulis J M , Bechelis A . Forensic Sci. Int. , 2009 , 190 ( 1/3 ): 87 - 90 .
Jakubeniene M , Chaker G A , Bechelis A , Malakiene D , Raudys R . Legal Med.-Tokyo , 2009 , 11 : S304 - S306 .
Palmiere C , Bardy D , Letovanec I , Mangin P , Augsburger M , Ventura F , Iglesias K , Werner D . Forensic Sci. Int. , 2013 , 226 ( 1/3 ): 54 - 61 .
Elshama S S , Osman H E H , El-Kenawy A E M . Rom. J. Legal Med. , 2016 , 7 ( 2 ): 211 - 227 .
Zhu B L , Ishikawa T , Quan L , Li D R , Zhao D , Maeda H . Forensic Sci. Int. , 2005 , 155 ( 1 ): 18 - 23 .
Marko R C , Branislava B , Bojan T , Aleksandar P , Milenko S , Branislav L , Ivan R . Afr. J. Biotechnol. , 2011 , 10 ( 50 ): 10293 - 10303 .
Blond B , Majkic M , Spasojevic J , Hristov S , Radinovic M , Nikolic S , Andusic L , Cukic A , Marinkovic M D , Vujanovic B D , Obradovic N , Cincovic M . Metabolites , 2024 , 14 ( 2 ): 104 .
Zhu B L , Ishida K , Quan L , Taniguchi M , Oritani S , Li D R , Masaki Q F , Maeda H . Forensic Sci. Int. , 2002 , 125 ( 1 ): 59 - 66 .
Zhu B L , Ishikawa T , Michiue T , Li D R , Zhao D , Quan L , Maeda H . Legal Med.-Tokyo , 2005 , 7 ( 5 ): 287 - 292 .
Maeda H , Zhu B L , Bessho Y , Ishikawa T , Quan L , Michiue T , Zhao D , Li D R , Komatsu A . Forensic Sci. Med. Path. , 2008 , 4 ( 3 ): 175 - 180 .
Zhu B L , Ishikawa T , Michiue T , Tanaka S , Zhao D , Li D R , Quan L , Oritani S , Maeda H . Legal Med.-Tokyo , 2007 , 9 ( 3 ): 115 - 122 .
Perez-Carceles M D , Del Pozo S , Sibon A , Noguera J A , Osuna E , Vizcaya M A , Luna A . Forensic Sci. Int. , 2011 : S0379073811003860 .
Agoro E S , Chinyere G C , Akubugwo E I . J. Forensic Leg. Med. , 2020 , 73 : 101994 .
Teresiński G , Buszewicz G , Madro R . Legal Med.-Tokyo , 2009 , 11 ( 1 ): 18 - 24 .
Ibrahim M A , Mohammed S S , Tammam H G , Abdel-Karim R I , Farag M M . Forensic Sci. Res. , 2022 , 7 ( 2 ): 211 - 227 .
0
浏览量
27
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构