浏览全部资源
扫码关注微信
1.江南大学 食品科学与资源挖掘全国重点实验室,江苏 无锡 214122
2.无锡市食品安全检验检测中心, 国家市场监管技术创新中心(特殊食品),江苏 无锡 214142
沈晓芳,博士,教授,研究方向:食品安全与质量控制,E-mail:xfshen@jiangnan.edu.cn
纸质出版日期:2025-01-15,
收稿日期:2024-06-21,
修回日期:2024-07-19,
移动端阅览
顾文,黎晨曼,孙震,庞月红,冯永巍,沈晓芳.碱-酶水解结合分散式固相萃取提高大豆异黄酮活性总量测定的准确性[J].分析测试学报,2025,44(01):106-115.
GU Wen,LI Chen-man,SUN Zhen,PANG Yue-hong,FENG Yong-wei,SHEN Xiao-fang.Alkaline-Enzymatic Hydrolysis and Dispersive Solid-phase Extraction for Improved Quantitation of Total Biological Isoflavones[J].Journal of Instrumental Analysis,2025,44(01):106-115.
顾文,黎晨曼,孙震,庞月红,冯永巍,沈晓芳.碱-酶水解结合分散式固相萃取提高大豆异黄酮活性总量测定的准确性[J].分析测试学报,2025,44(01):106-115. DOI: 10.12452/j.fxcsxb.240621161.
GU Wen,LI Chen-man,SUN Zhen,PANG Yue-hong,FENG Yong-wei,SHEN Xiao-fang.Alkaline-Enzymatic Hydrolysis and Dispersive Solid-phase Extraction for Improved Quantitation of Total Biological Isoflavones[J].Journal of Instrumental Analysis,2025,44(01):106-115. DOI: 10.12452/j.fxcsxb.240621161.
通过碱性甲醇溶液超声提取,结合杏仁来源
β
-葡萄糖苷酶水解及聚酰胺分散式固相萃取步骤,建立了超高效液相色谱测定大豆异黄酮活性总量的方法。样品中的丙二酰及乙酰类大豆异黄酮苷在碱性条件下水解成基本型苷,并在
β
-葡萄糖苷酶的作用下进一步脱去糖基转变为相应的苷元。样品中12种不同形式的大豆异黄酮转变为仅含3种大豆异黄酮苷元(大豆苷元、黄豆黄素、染料木素)后,以聚酰胺粉进行分散式固相萃取,C
18
反相色谱柱(2.1 mm i.d.×50 mm,1.8 µm)分离。结果显示,大豆苷元、黄豆黄素及染料木素在3 min内实现基线分离,3种异黄酮苷元的标准曲线相关系数(
r
2
)均大于0.999,总异黄酮的回收率为94.3%~102%,相对标准偏差(RSD,
n
=6)小于5.0%,具有较高的准确度和精密度。该方法通过检测样品中的全部苷元来计算异黄酮总量,有助于降低异黄酮检测在分离度、准确度及检测成本上带来的挑战;考虑异黄酮在体内的转化吸收机制和生理效应,以苷元总量计能更科学地反映实际的异黄酮活性水平,避免因通过苷和苷元的简单加和而造成对异黄酮含量水平的高估。
To determine the total isoflavones(ISF),most analytical methods have
focused on the three aglycone ISFs and three basic glucoside ISFs due to the unavailability of reference standards for malonyl- and acetyl- glucosides,and resulted in bias. Hence,an ultra performance liquid chromatography UPLC) method was developed that allows the quantitation of all 12 ISFs using only 3 isoflavone standards. All glucoside ISFs,including daidzin,malonyl and acetyl daidzin,glycitin,malonyl and acetyl glycitin,genistin,malonyl and acetyl genistin,were converted into only 3 aglycone ISFs via alkaline methanol extraction and enzymatic hydrolysis. The malonyl glucosides and acetyl glucosides in sample were firstly hydrolyzed to their corresponding glucoside forms in alkaline methanol,the produced glucosides were further hydrolyzed by a
β
-glucosidase from almonds,and the sugar moieties from glucoside were removed. The released and original existed aglycone units were concentrated by polyamide through a dispersive solid-phase extraction,and determined by UPLC. All 3 aglycone ISFs(daidzein,glycitein and genistein) were separated in a reversed-phase C
18
column(2.1 mm i.d.×50 mm,1.8 µm). The mobile phase,mixed acetonitrile and phosphoric acid aqueous solution was employed to enable a 3 min of isocratic elution. All linearity correlation coefficients(
r
2
) were higher than 0.999,and the recoveries were between 94.3% and 102% with relative standard deviations(RSD,
n
=6) less than 5.0%,that demonstrated precise and accurate results in the determination of total ISFs. To determine the total ISFs by simply summing the concentrations of the aglycon ISF will mitigate the pressure from interference,deviation and cost on test. In addition,based on the mechanisms of absorption and metabolism,using aglycone(free) forms to quantitate total ISFs is expected to present actual bioactivity of the phytoestrogens,this will avoid overestimate isoflavone levels or intake by simply adding of free and glucoside forms of isoflavone concentrations.
大豆异黄酮聚酰胺(PA)分散式固相萃取(d-SPE)β-葡萄糖苷酶超高效液相色谱(UPLC)
isoflavonepolyamide(PA)dispersive solid-phase extraction(d-SPE)β-glucosidaseultra performance liquid chromatography(UPLC)
Krizova L,Dadakova K,Kasparovska J,Kasparovsky T. Molecules,2019,24(6):1076.
Kang I,Rim C H,Yang H S,Choe J S,Kim J Y,Lee M. Nutr. Res. Pract.,2022,16:S147-S159.
Li S,Wang J. Soybean Sci.(李硕,王建. 大豆科学),2020,39(4):633-640.
Tan J L,Huang C,Luo Q H,Liu W T,Cheng D J,Li Y F,Xia Y,Li C,Tang L,Fang J,Pan K C,Qu Y P,Cheng A C,Chen Z L. Molecules,2019,24(15):2809.
Zou X,Zhao R,Wu M M,Wan Q Y,Li T. Nutrients,2023,15:1358.
Hatono M,Ikeda H,Suzuki Y,Kajiwara Y,Kawada K,Tsukioki T,Kochi M,Suzawa K,Iwamoto T,Yamamoto H,Shien T,Yamane M,Taira N,Doihara H,Toyooka S. Breast Cancer Res. Treat.,2021,185:307-316.
Silva H. Biology-Basel,2021,10(1):49.
Lambert M N T,Jeppesen P B. Curr. Opin. Clin. Nutr. Metab. Care,2018,21(6):475-480.
Pabich M,Materska M. Nutrients,2019,11(7):1660.
Gonsioroski A,Mourikes V E,Flaws J A. Int. J. Mol. Sci.,2020,21(6):1929.
Caceres S,Crespo B,Alonso-Diez A,de Andres P J,Millan P,Silvan G,Illera M J,Illera J C. Nutrients,2023,15(5):1261.
GB 10765-2021. Infant Formula. National Standards of the People’s Republic of China(婴儿配方食品. 中华人民共和国国家标准).
Suen A A,Kenan A C,Williams C J. Biochem. Pharmacol.,2022,195:114848.
Qin H,Lin Z J,Vasquez E,Luan X,Guo F F,Xu L. Nutr. Res.,2019,71:30-42.
Lin F Y,Huang Y N,Chu H J,Wang W X,Song Y,Xue Y N,Zheng F,Li G. China Oils and Fats(林凤岩,黄永娜,褚洪俊,王文昕,宋宇,薛亚南,郑峰,李庚. 中国油脂),2023,48(11):33-37.
Canivenc-Lavier M C,Bennetau-Pelissero C. Nutrients,2023,15(2):317.
Bensaada S,Chabrier F,Ginisty P,Ferrand C,Peruzzi G,Valat M,Bennetau-Pelissero C. Foods,2023,12(7):1540.
Klump S P,Allred M C,MacDonald J L,Ballam J M. J. AOAC Int.,2001,84(6):1865-1883.
Collison M W. J. AOAC Int.,2008,91(3):489-500.
Migues V H,David J M,Gomes A F,David J P. Food Anal. Methods,2022,15:367-376.
Shim Y S,Yoon W J,Hwang J B,Park H J,Seo D,Ha J. Food Chem.,2015,187:391-397.
QB/T 5397-2019. Determination of Soybean Isoflavones in Soyfoods. Light Industry Standards of the People’s Republic of China(大豆食品中异黄酮含量的测定. 中华人民共和国轻工行业标准).
Chien H J,Wang C S,Chen Y H,Toh J T,Zheng Y F,Hong X G,Lin H Y,Lai C C. Anal. Chim. Acta,2020,1103:122-133.
Min J L,Wang Z T,Lian C L,Li W J,Shao J,Zhu K R,Zhou L,Cheng J,Luo S H,Yu L H,Wu Y D,Xie M Y,Hu X J. J. Agric. Food Chem.,2020,68(11):3485-3494.
Hu P,Jin H. Sci. Technol. Food Ind.(胡珀,金华. 食品工业科技),2019,40(13):193-196.
Sakamoto S,Yusakul G,Pongkitwitoon B,Paudel M K,Tanaka H. Food Chem.,2015,169 :127-133.
Zhang Y F,Ma H X,Zhang Y H,Dong Y M. Electrophoresis,2022,43(11):1140-1147.
Phillips M M,Bedner M,Reitz M,Burdette C Q,Nelson M A,Yen J H,Sander L C,Rimmer C A. Anal. Bioanal. Chem.,2017,409(4):949-960.
Magdalena W K,Ireneusz S,Grazyna S,Karolina Z,Ryszard K,Tomasz B. Chem. Papers,2016,70(8):1087-1093.
Izumi T,Piskula M K,Osawa S,Obata A,Tobe K,Saito M,Kataoka S,Kubota Y,Kikuchi M. J. Nutr.,2000,130(7):1695-1699.
Zubik L,Meydani M. Am. J. Clin. Nutr.,2003,77(6):1459-1465.
Chen J X,Chen K Y,Lian Y,Yao X S,Huang Y X,Gao Y,Xiao Y. Food Res. Dev.(陈嘉序,陈扣扬,连媛,姚欣硕,黄钰昕,高瑶,肖愈. 食品研究与开发),2021,42(9):176-182.
McCarver G,Bhatia J,Chambers C,Clarke R,Etzel R,Foster W,Hoyer P,Leeder J S,Peters J M,Rissman E,Rybak M,Sherman C,Toppari J,Turner K. Birth Defects Res. Part B,2011,92(5):421-468.
Gu W,Pang Y H,Li Y L,Shen X F,Liu J. ACS Food Sci. Technol.,2024,4(1):263-271.
Singh G,Verma A K,Kumar V. 3 Biotech,2015,6:3.
Aresta A,Grumo F D,Zambonin C. Food Anal. Methods,2016,9(4):925-933.
Hati S,Ningtyas D W,Khanuja J K,Prakash S. Food Biosci.,2020,34:100542.
Cruz J C,Souza I D D,Lancas F M,Queiroz M E C. J. Chromatogr. A,2022,1668:462925.
Tang T X,Xu X J,Wang D M,Zhao Z M,Zhu L P,Yang D P. Food Anal. Methods,2015,8:459-466.
Liu Z K,Xu Q Q,Yang C,Li J,Zhou W F,Gao H X,Zhang S B,Lu R H. J. Res. Sci.,2021,44:1931-1938.
0
浏览量
37
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构