浏览全部资源
扫码关注微信
1.云南民族大学 化学与环境学院,云南省教育厅功能纳米材料基化学生物传感科技创新团队,云南 昆明 650504
2.迪肯大学 生命与环境科学学院,澳大利亚维多利亚州 吉朗 3217
张艳丽,博士,教授,研究方向:化学与生物传感,E-mail:ylzhang@ymu.edu.cn
庞鹏飞,博士,教授,研究方向:化学传感分析,E-mail:pfpang@aliyun.com
收稿日期:2024-06-20,
修回日期:2024-09-19,
录用日期:2025-02-11,
纸质出版日期:2025-03-15
移动端阅览
易锦飞,尹学虎,李蓉,马丽红,张艳丽,王红斌,杨文荣,庞鹏飞.基于还原氧化石墨烯/金纳米粒子/多壁碳纳米管复合材料构建酶生物燃料电池自供能葡萄糖生物传感器研究[J].分析测试学报,2025,44(03):393-401.
YI Jin-fei,YIN Xue-hu,LI Rong,MA Li-hong,ZHANG Yan-li,WANG Hong-bin,YANG Wen-rong,PANG Peng-fei.An Enzymatic Biofuel Cells-based Self-powered Glucose Biosensor Based on Reduced Graphene Oxide/Gold Nanoparticles/Multi-walled Carbon Nanotubes Nanocomposite[J].Journal of Instrumental Analysis,2025,44(03):393-401.
易锦飞,尹学虎,李蓉,马丽红,张艳丽,王红斌,杨文荣,庞鹏飞.基于还原氧化石墨烯/金纳米粒子/多壁碳纳米管复合材料构建酶生物燃料电池自供能葡萄糖生物传感器研究[J].分析测试学报,2025,44(03):393-401. DOI: 10.12452/j.fxcsxb.240620153.
YI Jin-fei,YIN Xue-hu,LI Rong,MA Li-hong,ZHANG Yan-li,WANG Hong-bin,YANG Wen-rong,PANG Peng-fei.An Enzymatic Biofuel Cells-based Self-powered Glucose Biosensor Based on Reduced Graphene Oxide/Gold Nanoparticles/Multi-walled Carbon Nanotubes Nanocomposite[J].Journal of Instrumental Analysis,2025,44(03):393-401. DOI: 10.12452/j.fxcsxb.240620153.
基于酶生物燃料电池(EBFC)构建的自供能传感装置具有结构简单、易于小型化、无需外部电源等优势,在临床诊断、环境监测、生物传感等领域具有潜在的应用前景。利用还原氧化石墨烯/金纳米粒子/多壁碳纳米管(rGO/AuNPs/MWCNTs)复合材料作为电极基底材料,通过在rGO/AuNPs/ MWCNTs修饰电极表面分别固定葡萄糖氧化酶(GOx)和电沉积生长二氧化锰(MnO
2
),制得EBFC生物阳极和阴极,构建单室酶生物燃料电池自供能葡萄糖生物传感器(EBFC-SPGB)。当存在目标物葡萄糖时,生物阳极表面固定的GOx发生酶促反应,催化葡萄糖产生电子经外电路到达阴极,导致阴极表面MnO
2
发生还原反应,产生电化学响应信号。rGO/AuNPs/MWCNTs纳米复合材料具有优异的导电性、生物相容性和较大的比表面积,其协同效应可显著提高GOx负载量和有效促进电子在电极表面传递。构建的EBFC-SPGB最大功率输出信号与葡萄糖浓度在1~30 mmol/L范围内呈良好的线性关系,检出限(
S
/
N
=3)为0.3 mmol/L,成功用于人体血清样本中葡萄糖浓度的检测。
Enzymatic biofuel cells(EBFC)-based self-powered sensing device has the advantages of simple structure,easy miniaturization,and no need for external power supply. It exhibits potential application prospects in clinical diagnosis,environmental monitoring,biosensing and other fields. Reduced graphene oxide/Aurum nanoparticles/multi walled carbon nanotubes(rGO/AuNPs/MWCNTs) nanocomposite was used as electrode substrate materials. The bioanode and cathode of enzymatic biofuel cells were prepared via immobilization of glucose oxidase(GOx) and electroposition growth of manganese dioxide(MnO
2
) on the surface of rGO/AuNPs/MWCNTs modified electrodes,respectively. An enzymatic biofuel cells-based self-powered glucose biosensor(EBFC-SPGB) was constructed by combining as-prepared bioanode and cathode in supporting electrolyte at room temperature. In the presence of target glucose,the GOx fixed on the surface of the bioanode promotes an enzymatic reaction. The electrons generated by catalyzing glucose transferred to the cathode
through an external circuit,resulting in a reduction reaction of MnO
2
on the cathode surface and generating an electrochemical response signal. Due to the excellent conductivity,biocompatibility and large specific surface area of rGO/AuNPs/MWCNTs nanocomposite,the synergistic effect of nanocomposite can significantly increase loading amount of GOx and effectively promote electron transfer on the electrode surface. The maximum power output signal of the constructed EBFC-SPGB shows a good linear relationship with glucose concentration in the range of 1-30 mmol/L,with a detection limit(
S
/
N
=3) of 0.3 mmol/L,which can be applied to analysis of glucose concentration in human serum samples.
Zhao C E , Gai P P , Song R B , Chen Y , Zhang J R , Zhu J J . Chem. Soc. Rev. , 2017 , 46 : 1545 - 1564 .
Gu C C , Gai P P , Li F . Nano Energy , 2022 , 93 : 106806 .
Katz E , Bückmann A F , Willner I . J. Am. Chem. Soc. , 2001 , 123 : 10752 - 10753 .
Zhang J L , Wang Y H , Huang K , Huang K J , Jiang H , Wang X M . Nano Energy , 2021 , 84 : 105853 .
Chen Y X , Ji W H , Yan K , Gao J , Zhang J D . Nano Energy , 2019 , 61 : 173 - 193 .
Fu L Y , Liu J J , Hu Z Q , Zhou M . Electroanalysis , 2018 , 30 : 2535 - 2550 .
Chen Y X , Gao J , Yan K , Yao X L , Liu Y , Zhang J D . Sens . Actuators B : Chem. , 2020 , 316 : 128130 .
Gu C C , Gai P P , Hou T , Li H Y , Xue C H , Li F . ACS Appl. Mater. Inter. , 2017 , 9 : 35721 - 35728 .
Hao S , Sun X X , Zhang H , Zhai J F , Dong S J . J. Mater. Chem. B , 2020 , 8 : 3393 - 3407 .
Xiao X X , McGourty K D , Magner E . J. Am. Chem. Soc. , 2020 , 142 : 11602 - 11609 .
Wang L L , Shao H H , Lu X Z , Wang W J , Zhang J R , Song R B , Zhu J J . Chem. Sci. , 2018 , 9 : 8482 - 8491 .
Du B Y , Lu H X , Zhang Z W , Wang Y , Hu X L , Chen Q C , Song M L , Liu M C . Biosens. Bioelectron. , 2022 , 216 : 114661 .
Wei J , Hu Q Q , Gao Y , Hao N , Qian J , Wang K . Anal. Chem. , 2021 , 93 : 6214 - 6222 .
Du X J , Jiang D , Liu Q , Hao N , Wang K . Anal. Chem. , 2019 , 91 : 1728 - 1732 .
Wu Y J , Luo D , Yi J F , Li R , Yang D , Pang P F , Wang H B , Yang W R , Zhang Y L . Analyst , 2024 , 149 : 2621 - 2628 .
Zhang X L , Wu D , Zhou X X , Yu Y X , Liu J C , Hu N , Wang H L , Li G L , Wu Y N . TrAC Trends Anal. Chem. , 2019 , 121 : 115668 .
Wang F T , Wang Y H , Xu J , Huang K J . J. Mater. Chem. B , 2020 , 8 : 1389 - 1395 .
Yu W , Kong X K , Gu C C , Gai P P , Li F . Sens . Actuators B : Chem. , 2020 , 307 : 127618 .
Gai P P , Gu C C , Hou T , Li F . Anal. Chem. , 2017 , 89 : 2163 - 2169 .
Wang F T , Huang K J , Hou Y Y , Tan X C , Wu X , Yu X M , Zhou X . Nanoscale , 2022 , 14 : 815 - 822 .
Ye J Q , Lu J H , Wen D . Mater. Chem. Front. , 2023 , 7 : 5806 - 5825 .
Del Campo F J . Curr. Opin. Electrochem. , 2023 , 41 : 101356 .
Teymourian H , Barfidokht A , Wang J . Chem. Soc. Rev. , 2020 , 49 : 7671 - 7709 .
Hardie D G . Science , 2017 , 357 ( 6350 ): 455 - 456 .
Wild S , Roglic G , Green A , Sicree R , King H . Diabetes Care , 2017 , 27 ( 5 ): 1047 - 1053 .
Hwang D W , Lee S , Seo M , Chung T D . Anal. Chim. Acta , 2018 , 1033 : 1 - 34
Saha T , Caño R D , Mahato K , Paz E D , Chen C R , Ding S C , Yin L , Wang J . Chem. Rev. , 2023 , 123 : 7854 - 7889 .
Zhang C , Ge X Y , Chen D W , Wu Y N . J. Instrum. Anal. (张弛,葛鑫禹,陈达炜,吴永宁. 分析测试学报), 2024 , 43 ( 7 ): 1058 - 1062 .
Yin X H , Yang X J , Luo D , Zhang Y L , Wang H B , Yang W R , Pang P F . J. Instrum. Anal. (尹学虎,杨新杰,罗丹,张艳丽,王红斌,杨文荣,庞鹏飞. 分析测试学报), 2023 , 42 ( 3 ): 315 - 322 .
Gogotsi Y , Anasori B . ACS Nano , 2019 , 13 : 8491 - 8494 .
Kalambate P K , Gadhari N S , Li X , Rao Z X , Navale S T , Shen Y , Patil V R , Huang Y H . Trends Anal. Chem. , 2019 , 120 : 115643 .
Wang Y , Zhang S , Du D , Shao Y Y , Li Z H , Wang J , Engelhard M H , Li J H , Lin Y H . J. Mater. Chem. , 2011 , 21 : 5319 - 5325 .
Žalnėravičius R , Klimas V , Naujokaitis A , Jagminas A , Ramanavičius A . Electrochim. Acta , 2022 , 426 : 140689 .
Sezer N , Koç M . Surf. Interfaces , 2019 , 14 : 1 - 8 .
Liu Y H , Xu J L , Gao X , Sun Y L , Lv J J , Shen S , Chen L S , Wang S D . Energy Environ. Sci. , 2017 , 10 : 2534 - 2543 .
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构