1.东华理工大学 功能有机高分子江西省重点实验室,江西 南昌 330013
2.东华理工大学 化学与材料学院,江西 南昌 330013
3.赣东学院 应用工程学院,江西 抚州 344000
曹小红,博士,教授,研究方向:放射性核素的分析检测,E-mail:xhcao@ecut.edu.cn
收稿:2024-05-14,
修回:2024-07-11,
纸质出版:2024-10-15
移动端阅览
彭洪波,李世琪,曹小红,刘云海.基于双发射Ln-MOFs的比率荧光传感器检测UO22+[J].分析测试学报,2024,43(10):1626-1634.
PENG Hong-bo,LI Shi-qi,CAO Xiao-hong,LIU Yun-hai.A Ratiometric Fluorescent Sensor for UO22+ Detection Based on Dual-emission Ln-MOFs[J].Journal of Instrumental Analysis,2024,43(10):1626-1634.
彭洪波,李世琪,曹小红,刘云海.基于双发射Ln-MOFs的比率荧光传感器检测UO22+[J].分析测试学报,2024,43(10):1626-1634. DOI: 10.12452/j.fxcsxb.24051436.
PENG Hong-bo,LI Shi-qi,CAO Xiao-hong,LIU Yun-hai.A Ratiometric Fluorescent Sensor for UO22+ Detection Based on Dual-emission Ln-MOFs[J].Journal of Instrumental Analysis,2024,43(10):1626-1634. DOI: 10.12452/j.fxcsxb.24051436.
铀作为一种放射性元素,在水体中具有高流动性以及对生物体的高毒性,开发一种能够快速、灵敏检测水体中痕量UO
2
2+
的分析方法显得极其重要。该研究采用双金属策略成功制备具有双发射中心的Eu/Zr-UiO-66-NH
2
,并以此构建比率荧光传感器实现了对UO
2
2+
的可视化检测。以Eu
3+
为第二金属源部分取代Zr
4+
,有机配体通过“天线效应”敏化Eu
3+
的禁阻跃迁,可使Eu/Zr-UiO-66-NH
2
呈现双发射中心。同时,因Eu
3+
和 Zr
4+
的竞争配位而产生的晶格缺陷增大了MOFs的孔径尺寸,有利于UO
2
2+
在孔道内的富集,进一步提高荧光传感的灵敏度。采用扫描电子显微镜、X射线粉末衍射仪、N
2
吸脱附曲线和荧光光谱等对Eu/Zr-UiO-66-NH
2
的缺陷结构和光学性能进行表征,并考察了 Eu
3+
的掺入量、溶剂、荧光探针用量、时间等因素对传感器检测效果的影响。在99% 乙醇-水溶液中预先富集30 min,加入UO
2
2+
后,Eu/Zr-UiO-66-NH
2
发生明显的荧光增强,
I
F450
/
I
F620
与UO
2
2+
浓度在100~900 nmol/L范围内呈现出良好的线性关系,检出限为16.1 nmol/L。紫红色到蓝色的荧光色调转变更有利于现场半定量检测,20倍浓度的
各种干扰离子不会影响Eu/Zr-UiO-66-NH
2
对UO
2
2+
的荧光响应。紫外-可见吸收光谱、X射线光电子能谱等实验证明Eu/Zr-UiO-66-NH
2
的荧光增强为动态的电子转移过程。该传感器成功应用于自来水样品中UO
2
2+
含量的测定,具有良好的应用前景。
Uranium,as a radioactive element,has high mobility in water and high toxicity to organisms. Therefore,it is extremely important to develop an analytical method that can quickly and sensitively detect trace amounts of UO
2
2+
in water. In this study,dual-emission Ln-MOFs(Eu/Zr-UiO-66-NH
2
) were successfully prepared by using bimetallic strategy,and the ratiometric fluorescent sensor was constructed to realize the visual detection of UO
2
2+
. By partially replacing Zr
4+
with Eu
3+
as the second metal source,the organic ligand sensitizes the forbidden transition of Eu
3+
through the“antenna effect”,and the Eu/Zr-UiO-66-NH
2
exhibits double emission centers. Moreover,the lattice defects generated by the competitive coordination of Eu
3+
and Zr
4+
increase the pore size of MOFs,which is conducive to the enrichment of UO
2
2+
in the pore channel and further improves the sensitivity of fluorescence sensing. Scanning electron microscopy(SEM),X-ray powder diffractometer(XRD),N
2
adsorption-desorption experiment and fluorescence spectroscopy were used to characterize the defect structure and optical properties of Eu/Zr-UiO-66-NH
2
,and the effects of the doping amount of Eu
3+
,solvent,fluorescent probe dosage and time on the detection of the sensor were investigated. Following the enrichment of UO
2
2+
in a 99% ethanol solution for a period of 30 min,the Eu/Zr-UiO-66-NH
2
exhibited a notable enhancement in fluorescence intensity. The
I
F450
/I
F620
exhibited a good linear relationship with the concentration of UO
2
2+
within the range of 100-900 nmol/L,and the detection limit was 16.1 nmol/L. The shift in fluorescence hue from violet to blue was more conducive to on-site semi-quantitative detection. The 20-fold concentration of various interfering ions did not affect the fluorescence response of Eu/Zr-UiO-66-NH
2
to UO
2
2+
. The results of UV-Vis spectroscopy and X-ray photoelectron spectroscopy(XPS) indicated that the fluorescence enhancement process was a dynamic electron transfer mechanism. The sensor has been successfully applied to the determination of UO
2
2+
content in tap water samples and has good application prospects.
Ma M , Wang R , Xu L , Xu M , Liu S . Environ. Int. , 2020 , 145 : 106107 .
Wu X , Huang Q , Mao Y , Wang X , Wang Y , Hu Q , Wang H , Wang X . TrAC Trends Anal. Chem. , 2019 , 118 : 89 - 111 .
Elhefnawy O A , Elabd A A . Radiochim. Acta , 2018 , 106 ( 7 ): 569 - 579 .
Coopersmith K , Cody R B , Mannion J M , Hewitt J T , Koby S B , Wellons M S . Rapid Commun. Mass Spectrom. , 2019 , 33 ( 22 ): 1695 - 1702 .
Khuhawar M Y , Lanjwani S N , Jehangir T M . Anal. Sci. , 2004 , 20 ( 8 ): 1193 - 1197 .
Zhu J H , Zhao X , Yang J , Tan Y T , Zhang L , Liu S P , Liu Z F , Hu X L . Spectrochim. Acta A , 2016 , 159 : 146 - 150 .
Gao Y , Hou J J , Zhang J , Guo J , Ming Y H , Shao Z S . J. Instrum. Anal. (高越,侯金金,张建,郭静,明远航,邵兆帅. 分析测试学报), 2023 , 42 ( 5 ): 577 - 585 .
Shamsipur M , Molaei K , Molaabasi F , Hosseinkhani S , Alizadeh N , Alipour M , Moassess S . Sens. Actuators B , 2018 , 257 : 772 - 782 .
Wang G , Liu X , Cai S , Zhang S , Cui J , Gao C , Cheng Z . J. Fluoresc. , 2021 , 31 : 713 - 718 .
Sun J , Feng A , Wu X , Che X , Zhou W . Talanta , 2021 , 231 : 122334 .
Li P , Luo C , Chen X , Huang C . Spectrochim. Acta A , 2024 , 305 : 123557 .
Yang Y , Yang H , Wan Y , Zhou W , Deng S , He Y , He G , Xie X , Deng R . J. Hazard. Mater. , 2021 , 413 : 125383 .
Wang D , Zhang L J , Liu M H , Du F F , Shen Z Y , He L , Wang L L . J. Hazard. Mater. , 2023 , 454 : 131497 .
Li C Y , Zhao Z J , Bai W Q , Gao L J . J. Instrum. Anal. (李春雨,赵卓君,白万乔,高楼军. 分析测试学报), 2024 , 43 ( 4 ): 600 - 606 .
Nan H R , Liu Y H , Gong W J , Peng H B , Wang Y Q , Zhang Z B , Cao X H . Anal.Methods , 2022 , 14 ( 5 ): 532 - 540 .
Klet R C , Liu Y , Wang T C , Hupp J T , Farha O K . J. Mater. Chem. A , 2016 , 4 ( 4 ): 1479 - 1485 .
DeStefano M R , Islamoglu T , Garibay S J , Hupp J T , Farha O K . Chem. Mater. , 2017 , 29 ( 3 ): 1357 - 1361 .
Gui B , Meng X , Xu H , Wang C . Chin. J. Chem. , 2016 , 34 ( 2 ): 186 - 190 .
Patel N , Shukla P , Lama P , Das S , Pal T K . Cryst. Growth Des. , 2022 , 22 ( 5 ): 3518 - 3564 .
Sun T , Gao Y , Du Y , Zhou L , Chen X . Front. Chem , 2021 , 8 : 624592 .
Kui Y , Zhang Y R , Chen Q F , Xia Y . J. Instrum. Anal. (隗玉,张亚如,陈企发,夏炎. 分析测试学报), 2021 , 40 ( 3 ): 333 - 339 .
Zhao Y , Li D . J. Mater. Chem. C , 2020 , 8 ( 37 ): 12739 - 12754 .
Zhang Z , Liu L , Zhang T , Tang H . ACS Appl. Mater. Interfaces , 2023 , 15 ( 15 ): 18982 - 18991 .
Xia Y F , Bao G M , Peng X X , Wu X Y , Lu H F , Zhong Y F , Li W , He J X , Liu S Y , Fan Q , Li S H , Xiao W , Yuan H Q . Anal. Chim. Acta , 2022 , 1221 : 340115 .
Luo X B . China Patent(罗旭彪 . 中国专利) , CN202110280896.3, 2021 .
Feng Y , Chen Q , Cao M , Ling N , Yao J . ACS Appl . Nano Mater. , 2019 , 2 ( 9 ): 5973 - 5980 .
Yin H Q , Yin X B . Acc. Chem. Res. , 2020 , 53 ( 2 ): 485 - 495 .
Zeng X , Long Z , Jiang X , Zhang Y , Liu Q , Hu J , Li C , Wu L , Hou X . Anal. Chem. , 2020 , 92 ( 7 ): 5500 - 5508 .
Chen D M , Sun C X , Peng Y , Zhang N N , Si H H , Liu C S , Du M . Sens. Actuators B , 2018 , 265 : 104 - 109 .
0
浏览量
720
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
