NING Jing,ZHONG Yue-yan,LIU Xue-ying,XIE Li-xia,WANG Tong.An Image Preprocessing Integration Strategy Combined with Improved YOLOv8 Model for Identification of Microalgae Species[J].Journal of Instrumental Analysis,2025,44(06):1024-1033.
NING Jing,ZHONG Yue-yan,LIU Xue-ying,XIE Li-xia,WANG Tong.An Image Preprocessing Integration Strategy Combined with Improved YOLOv8 Model for Identification of Microalgae Species[J].Journal of Instrumental Analysis,2025,44(06):1024-1033. DOI: 10.12452/j.fxcsxb.250223113.
An Image Preprocessing Integration Strategy Combined with Improved YOLOv8 Model for Identification of Microalgae Species
To address the limitations of traditional microalgae detection methods,which rely on manual microscopy,result in prolonged analysis times,and produce results that are highly susceptible to the technical expertise of personnel,an integrated image preprocessing strategy combined with an enhanced YOLOv8 deep learning model for microalgae identification was proposed. A multi-method integration strategy of Gaussian fuzzy,Laplacian operator and principal component analysis was used to preprocess microalgae images. In the improved model,the SPD-Conv module was incorporated to mitigate the loss of fine-grained information,thereby improving the detection performance for low-resolution images and small-sized microalgae. A slim-neck architecture was employed to reduce the parameter count and model size,while the SimSPPF was introduced to expedite model convergence and enhance operational efficiency. The experimental results demonstrated that the multi-method integrated preprocessing strategy was able to substantially reduce image noise,and enhance the definition of microalgal contours. Under identical conditions,the improved YOLOv8 model achieved a mean average precision(mAP) of 92.2%,representing a 5.1% improvement over the original YOLOv8 model. Especially,it demonstrated superior performance in detecting small-sized microalgae. In comparison to Faster-RCNN,SSD,RTDETR-l,YOLOv3,YOLOv5,YOLOv6 and YOLOv7 models,the mAP of improved YOLOv8 model increased by 40.2%,6.8%,14.5%,1.2%,5.7%,4.7% and 0.8%,respectively. This method offers valuable insights for advancing microalgae species detection technology.
关键词
Keywords
references
Lobus N V , Kulikovskiy M S . Biology , 2023 , 12 ( 1 ): 92 .
Chen N S , Zhang M J , Liu S Y , Cui Z M . Oceanol. Limnol. Sin. (陈楠生,张梦佳,刘淑雅,崔宗梅. 海洋与湖沼), 2023 , 54 : 599 - 624 .
Yan T , Li X D , Tan Z J , Yu R C , Zou J Z . Harmful Algae , 2022 , 111 : 102148 .
Smith V H , Schindler D W . Trends Ecol. Evol. , 2009 , 24 ( 4 ): 201 - 207 .
Barsanti L , Birindelli L , Gualtieri P . Environ. Sci. Processes Impacts , 2021 , 23 ( 10 ): 1443 - 1457 .
Chong J W R , Khoo K S , Chew K W , Vo D N , Balakrishnan D , Banat F , Munawaroh H S H , Iwamoto K , Show P L . Bioresour. Technol. , 2023 , 369 : 128418 .
Xu Z , Jiang Y , Ji J , Forsberg E , Li Y , He S . Opt. Express , 2020 , 28 ( 21 ): 30686 - 30700 .
Wu Z G . Research and Application of Microalgae Lightweight Detection Algorithm Based on Improved YOLO v7 . Shanghai : Shanghai Ocean University(吴志高. 基于改进YOLOv7的微藻轻量级检测算法研究与应用. 上海:上海海洋大学) , 2023 .
Affonso C , Rossi A L D , Vieira F H A , Carvalho A C P D L F D . Expert Syst. Appl. , 2017 , 85 : 114 - 122 .
Alzubaidi L , Zhang J , Humaidi A J , Ai-Dujaili A , Duan Y , Ai-Shamma O , Santamaria J . J. Big Data , 2021 , 8 : 1 - 74 .
Redmon J , Divvala S , Girshick R , Farhadi A . IEEE Conference on Computer Vision and Pattern Recognition , Las Vegas,NV,USA , 2016 .
Park J , Baek J , You K , Nam S W , Kim J . J. KSWE , 2021 , 37 ( 4 ): 275 - 285 .
Park J , Baek J , Kim J , You K , Kim K . Water , 2022 , 14 ( 8 ): 1275 .
Su A . Research on Portable Microscopic System for Field Detection of Microalgae . Jinan : Shandong University (苏昂.用于微藻现场检测的便携式显微系统研究. 济南:山东大学), 2022 .
Wang L C , Chen C J , Zou Y W , Xie T . J. Electron. Meas. Instrum. (汪鲁才,陈春江,邹伊雯,谢婷. 电子测量与仪器学报), 2024 , 38 ( 4 ): 46 - 54 .
Sunkara R , Luo T . European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases , Grenoble , France , 2022 .
Li H , Li J , Wei H , Liu Z , Zhan Z , Ren Q . J. Real-Time Image Process. , 2024 , 21 ( 3 ): 62 .
Hu H , Zhu Z . Adv. Eng. Inf. , 2023 , 55 : 101824 .
He K , Zhang X , Ren S , Sun J . IEEE Trans. Pattern Anal. Mach. Intell. , 2015 , 37 ( 9 ): 1904 - 1916 .
Kasper-Eulaers M , Hahn N , Berger S , Sebulonsen T , Kummervold P E . Algorithms , 2021 , 14 ( 4 ): 114 .