ZHOU Xi,LIU Qian-bao,LU Qiao-li,ZHANG Chun-hua,KANG Huai-teng,LIU Chang,HUANG Fang,WU Hui-qin,LUO Hui-tai.Origin Identification of Citri Reticulatae Pericarpium Based on Mineral Element Content Combined with Machine Learning[J].Journal of Instrumental Analysis,2025,44(06):1190-1195.
ZHOU Xi,LIU Qian-bao,LU Qiao-li,ZHANG Chun-hua,KANG Huai-teng,LIU Chang,HUANG Fang,WU Hui-qin,LUO Hui-tai.Origin Identification of Citri Reticulatae Pericarpium Based on Mineral Element Content Combined with Machine Learning[J].Journal of Instrumental Analysis,2025,44(06):1190-1195. DOI: 10.12452/j.fxcsxb.241201565.
Origin Identification of Citri Reticulatae Pericarpium Based on Mineral Element Content Combined with Machine Learning
The contents of mineral elements in 255 batches of
Citri Reticulatae Pericarpium
from Xinhui and Guangxi were determined by inductively coupled plasma mass spectrometry. Orthogonal partial least squares discriminant analysis(OPLS-DA) was used to study the different elements in
Citri Reticulatae Pericarpium
from different producing areas. Four preprocessing methods,such as Z-score normalization,Min-Max normalization,mean normaliztion,and Max abs scaler,are used to establish a discriminant model by combining random forest(RF),decision tree(DT),support vector machine(SVM),and gradient boosting(GB) method. The results showed that among the 41 mineral elements,Na,Sn,Y,Ba,Er,Ho,Yb,Dy,Ni,Li,Gd,Tb,Sm,Nd,Rb were the main difference elements between
Citri Reticulatae Pericarpium from
Xinhui and Guangxi. Among the four machine learning models,the SVM model has the best prediction results. By SVM model,the accuracy of the training group and test group under the three processing methods of Z-score normalization,Min-Max normalization,and mean normalization was the same,which was 100% and 96
%,respectively,and the F1 value of 0.96. These result reflected the high accuracy of this method. Based on mineral element content combined with machine learning,this study established a high accuracy and reliability method for the origin identification of
Citri Reticulatae Pericarpium
,which provided technical support for quality control of
Citri Reticulatae Pericarpium
and provided the basis for the origin traceability discrimination of traditional Chinese medicinal herbs.
关键词
Keywords
references
State Pharmacopoeia Committee . Pharmacopoeia of the People ’ s Republic of China . Beijing : China Pharmaceutical Science and Technology Press (国家药典委员会. 中华人民共和国药典. 北京:中国医药科技出版社), 2020 .
Guo N X , Cai J L , Ji S G . China Pharm. (郭念欣,蔡佳良,姬生国. 中国药房), 2013 , 24 ( 15 ): 1394 - 1396 .
Yu M , Li S K , Yang F , Zheng Y , Li P , Jiang L W , Liu X . J. Instrum. Anal. (余梅,李尚科,杨菲,郑郁,李跑,蒋立文,刘霞. 分析测试学报), 2021 , 40 ( 1 ): 65 - 71 .
Zhang Y , Wang Y Y , Zhang T , Qin Y C , Nan T G , Yang J , Lü Y J . Chem. Reagents (张悦,王游游,张婷,覃驭楚,南铁贵,杨健,吕炎杰. 化学试剂), 2023 , 45 ( 1 ): 136 - 143 .
Yang X Y , Wen G H , Sheng G F , Li Y H , Duan Q , Tian F Y , Yang Y , Ken S Y . Flavour Fragrance Cosmet. (杨雪燕 , 温光和 , 盛光发 , 李友宏 , 段勤 , 田飞宇 , 杨屹 , 肯生叶 . 香料香精化妆品) , 2022 ,( 1 ): 1 - 6,19 .
Chen M Q , Shang X Y , Shi H C , Li H , Sun D , Qin R A , He F L , Huang Z M . J. Guangzhou Univ. Tradit. Chin. Med. (陈明权,商雪莹,石洪超,李华,孙东,覃仁安,何风雷,黄志敏. 广州中医药大学学报), 2023 , 40 ( 6 ): 1498 - 1502 .
Hu J T , Liu J H , Chen F Q , Liu T , Jiang L . Pharm. Today (胡继藤,刘基华,陈富钦,刘韬,蒋林. 今日药学), 2019 , 29 ( 6 ): 383 - 386 .
Lu S Y , Zhang L L , Pan J R , Zhu C . J. Food Saf. Qual. (卢诗扬,张雷蕾,潘家荣,朱诚. 食品安全质量检测学报), 2020 , 11 ( 14 ): 4849 - 4855 .
Bennion M , Morrison L , Brophy D , Carlsson J , Abrahantes J C , Graham C T . Sci. Total Environ. , 2019 , 685 : 50 - 58 .
Xu Z L , Zhang X Q . J. Food Saf. Qual. (徐芝亮,章新泉. 食品安全质量检测学报), 2024 , 15 ( 4 ): 186 - 193 .
Yu D X , Guo S , Zhang X , Yan H , Mao S W , Wang J M , Zhou J Q , Yang J , Yuan Y W , Duan J A . Food Chem. , 2023 , 426 : 136577 .
Wei J N , Li A , Zhang Q , Zhao Y P , Zhao L L , Su F , Sun M , Liu Z H . Qual. Saf. Agro-Prod. (魏静娜 , 李安 , 张强 , 赵云平 , 赵琳琳 , 苏蘩 , 孙萌 , 刘征辉 . 农产品质量与安全) , 2023 ,( 1 ): 73 - 80 .
Li F R , Liu W W , Wen D , Xu A P , Li L , Chen Y J , Chen C G , Wang X . Sci. Technol. Food Ind. (李富荣,刘雯雯,文典,徐爱平,李蕾,陈永坚,陈楚国,王旭. 食品工业科技), 2022 , 43 ( 11 ): 295 - 302 .
Peng Z , Guo X Z , Zhou L , Wu T X , Wang S , Kang C Z , Wan X F , Guo L P , Zhang Y , Yang J . Mod. Chin. Med. (彭政,郭秀芝,周利,吴统选,王升,康传志,万修福,郭兰萍,张燕,杨健. 中国现代中药), 2021 , 23 ( 7 ): 1204 - 1212 .
Luo L H , He Z , Zeng Y X , Zhu S T , Tian M , Lu D . Tea Fujian (骆凌寒,何赞,曾粤鑫,朱胜婷,田秘,陆顶. 福建茶叶), 2023 , 45 ( 10 ): 25 - 27 .
Worley B , Powers R . Curr. Metabolomics , 2016 , 4 ( 2 ): 97 - 103 .
Do K , Yeganeh A K , Gao Z , Ivey C E . Environ. Sci. , 2024 , 4 : 488 - 500 .
Wu P F , Wang B L , Lu Y , Cao G D , Xie P S , Wang W , Chen D L , Huang G F , Jin H B , Yang Z , Cai Z W . ACS ES&T Water , 2024 , 4 ( 3 ): 1107 - 1118 .
Pan D P , Guo Y L , Fan Y F , Wan H T . Am. J. Chin. Med. , 2024 , 52 ( 3 ): 605 - 623 .
Robinson R L M , Palczewska A , Palczewski J , Kidley N . J. Chem. Inf. Model , 2017 , 57 ( 8 ): 1773 - 1792 .
Wei X Y , Kong L R , Xiao L . Mod. Inf. Technol. (魏向祎,孔令然,肖磊. 现代信息科技), 2023 , 7 ( 5 ): 41 - 44 .
Yang Y , Bao C Y , Ding Y W , Li S H . Asia-Pac. Trad. Med. (杨友,包彩银,丁跃武,李四海. 亚太传统医药), 2023 , 19 ( 2 ): 41 - 45 .
Ding C , Ni S Q , Lü H X . Urban Mass Transit (丁聪,倪少权,吕红霞. 城市轨道交通研究), 2018 , 21 ( 9 ): 60 - 63 .
Chen X D , Xu Z P , Tong K , Wang D L . China Brew . (陈旭东,许忠平,童凯,王德良. 中国酿造), 2024 , 43 ( 6 ): 213 - 217 .