Research on Quantitative Analysis Method of Heavy Metal Elements in Soil Sediments Based on Laser Induced Breakdown Spectroscopy Combined with Machine Learning
Experimental Techniques and Methods|更新时间:2025-06-09
|
Research on Quantitative Analysis Method of Heavy Metal Elements in Soil Sediments Based on Laser Induced Breakdown Spectroscopy Combined with Machine Learning
Journal of Instrumental AnalysisVol. 44, Issue 6, Pages: 1115-1122(2025)
XING Yan,LI Mao-gang,NIAN Juan-ni,WANG Ting,ZHOU Kui,ZHANG Tian-long,LI Hua.Research on Quantitative Analysis Method of Heavy Metal Elements in Soil Sediments Based on Laser Induced Breakdown Spectroscopy Combined with Machine Learning[J].Journal of Instrumental Analysis,2025,44(06):1115-1122.
XING Yan,LI Mao-gang,NIAN Juan-ni,WANG Ting,ZHOU Kui,ZHANG Tian-long,LI Hua.Research on Quantitative Analysis Method of Heavy Metal Elements in Soil Sediments Based on Laser Induced Breakdown Spectroscopy Combined with Machine Learning[J].Journal of Instrumental Analysis,2025,44(06):1115-1122. DOI: 10.12452/j.fxcsxb.241118533.
Research on Quantitative Analysis Method of Heavy Metal Elements in Soil Sediments Based on Laser Induced Breakdown Spectroscopy Combined with Machine Learning
The issue of heavy metal contamination in soil sediment is becoming increasingly prevalent. The development of on-site rapid detection methods for heavy metal elements represents the only viable approach to achieving effective pollution monitoring and environmental governance. Accordingly,this study proposed a quantitative analysis method for heavy metal elements in soil sediments based on laser-induced breakdown spectroscopy combined with machine learning algorithms. Firstly,the spectral collection of soil sediment samples was completed using
the constructed LIBS device,and the efficacy of various spectral preprocessing techniques on spectral data preprocessing was investigated. Subsequently,feature variable selection was conducted on the preprocessed spectral data,based on the measurement of variable importance. The preprocessing method,variable importance threshold,and other parameters were optimized using cross-validation. A quantitative analysis model for three heavy metal elements(Pb,Cu and Zn) in soil sediment samples was constructed based on optimized input variables. To further validate the performance of the model,a comparison was conducted with the performance of other calibration models. The results indicate that the VIM-RF calibration model proposed in this study exhibits the best predictive performance,with a
R
2
p
of 0.993 0 and a RMSE
p
of 0.029 8 mg/kg for Pb,a
R
2
p
of 0.981 0 and a RMSE
p
of 0.112 7 mg/kg for Cu,and a
R
2
p
of 0.992 0 and a RMSE
p
of 0.166 2 mg/kg for Zn. It can be seen that the method established by this research institute is expected to provide a theoretical reference for the rapid screening and treatment of heavy metal pollution in soil sediment environments.
关键词
Keywords
references
Liu Q Q , Ma T , Sheng Y Q , Wang W J , Jiang M , Liu X Z , Hu N N . Environ. Monit. Assess. , 2023 , 195 : 430 .
Wang J W , Gao C Y , Liu X L , Tan G M . J. Soil. Sediment , 2022 , 22 : 238 - 255 .
Wang M H , Liu X Y , Yang B , Fei Y , Yu J J , An R , Duan L J . Environ. Sci. Pollut. R. , 2021 , 28 : 29118 - 29130 .
Diwa R R , Deocaris C C , Orbecido A H , Beltran A B , Vallar E A , Galvez M C D , Belo L P . Soil Sediment Contam. , 2023 , 32 : 1033 - 1052 .
Ren J , Yang Z H , Zhao Y R , Yu K Q . Opt. Express , 2022 , 30 : 37711 - 37726 .
Xie F Y , Yu M C , Yuan Q K , Meng Y , Qie Y K , Shang Z M , Luan F B , Zhang D L . J. Hazard. Mater. , 2022 , 436 : 129309 .
Harmon R S , Russo R E , Hark R R . Spectrochim. Acta B , 2013 , 87 : 11 - 26 .
Wang T , Jiao L , Yan C H , He Y , Li M G , Zhang T L , Li H . Chemometr. Intell. Lab. , 2019 , 194 : 103854 .
Wen X , Hu Z , Nie J , Gao Z , Zhang D , Guo L , Ma S , Dong D . J. Anal. Atom. Spectrom. , 2023 , 38 : 1108 - 1115 .
Liu J , Gan L P , Sun T , Liu M H . J. Instrum. Anal. (刘津,甘兰萍,孙通,刘木华. 分析测试学报), 2017 , 36 ( 9 ): 1099 - 1103 .
Li M G , Fu H , Du Y , Huang X , Zhang T L , Tang H S , Li H . J. Anal. Atom. Spectrom. , 2022 , 37 : 1099 - 1108 .
Zeng Q D , Guo L B , Li X Y , Shen M , Zhu Y N , Li J M , Yang X Y , Li K H , Duan J , Zeng X Y , Lu Y F . J. Anal. Atom. Spectrom. , 2016 , 31 : 767 - 772 .
Garcia-Comendador J , Martinez-Carreras N , Fortesa J , Company J , Borras A , Estrany J . J. Environ. Manage. , 2021 , 299 : 113593 .
Diaz D , Molina A , Hahn D W . Appl. Spectrosc. , 2020 , 74 : 42 - 54 .
Ruan F Q , Hou L , Zhang T L , Li H . Analyst , 2021 , 146 : 1023 - 1031 .
Yan C H , Liang J , Zhao M J , Zhang X , Zhang T L , Li H . Anal. Chim. Acta , 2019 , 1080 : 35 - 42 .
Yan C H , Zhang T L , Sun Y Q , Tang H S , Li H . Spectrochim. Acta B , 2019 , 154 : 75 - 81 .
Li M G , Liang J , Yan C H , Tang H S , Zhang T L , Li H . Chin. J. Anal. Chem. (李茂刚,梁晶,闫春华,汤宏胜,张天龙,李华. 分析化学), 2021 , 49 ( 8 ): 1410 - 1418 .
Liu K , Tian D , Xu H Y , Wang H X , Yang G . Anal. Methods , 2019 , 11 : 4769 - 4774 .
Ding S , Shen T R , Zhang Y F , Du H Z , Wu Y , Zou X Y . J. Instrum. Anal. (丁莎,申涛榕,张艳飞,杜欢哲,吴榆,邹小勇. 分析测试学报), 2023 , 42 ( 11 ): 1510 - 1516 .