LÜ Shu-bin,WAN You,LI Fu-sheng,YANG Wan-qi.Research on CARS-GAF-MobileNet Aluminum Alloy Grades Classification Based on XRF[J].Journal of Instrumental Analysis,2025,44(06):1161-1168.
LÜ Shu-bin,WAN You,LI Fu-sheng,YANG Wan-qi.Research on CARS-GAF-MobileNet Aluminum Alloy Grades Classification Based on XRF[J].Journal of Instrumental Analysis,2025,44(06):1161-1168. DOI: 10.12452/j.fxcsxb.241027487.
Research on CARS-GAF-MobileNet Aluminum Alloy Grades Classification Based on XRF
Aluminum alloys are widely used in industry due to their excellent characteristics,and accurate classification of aluminum alloys grades can further promote the development of manufacturing and other fields. In this paper,a new aluminum alloy X-ray fluorescence(XRF) spectral classification framework CARS-GAF-MobileNet(CGM)was proposed. First,an XRF spectrometer was used to obtain XRF spectral data of the aluminum alloy samples. Then,a multi-element calibration-based competitive adaptive reweighted sampling(CARS) was proposed to select variables for the data. Next,the one-dimensional spectra were converted into two-dimensional spectral images using Gramian angular field(GAF),and the grayscale images were converted into RGB images by color mapping. Finally,the converted 2D spectral images were inputs to the Mobilenet-V3 model to classify the aluminum alloy samples. The experimental results showed that the final classification accuracy of the proposed CGM framework could reach 94.3%,which could accurately identify aluminum alloy samples of different grades. The CGM is a promising framework for identifying aluminum alloy grades,and it has superior theoretical guidance and application value for the aluminum alloy classification problem.
关键词
Keywords
references
Arias L , Balladares E , Parra R , Sbarbaro D , Torres S . Minerals , 2021 , 11 ( 1 ): 1 - 17 .
Chen G X , Zhou S B , Chen X , Liu Y S , Zhao L L , Han W . Spectrosc. Spectral Anal. (陈国喜,周松斌,陈欣,刘忆森,赵路路,韩威. 光谱学与光谱分析), 2022 , 42 ( 12 ): 3811 - 3816 .
Chen J , Ding Y , Hu A , Chen W , Wang Y F , Zhao M L , Shu Y . Opt. Express , 2023 , 31 ( 25 ): 41129 - 41148 .
Liu X Y , Zhang D C , Feng Z Q , Ding J , Yang R Q , Sun S J , Wang K J , Zhu J F , Wei Z Y . Acta Photonica Sin. (刘旭阳,张大成,冯中琦,丁捷,杨润强,孙思佳,王柯俭,朱江峰,魏志义. 光子学报), 2021 , 50 ( 10 ): 173 - 180 .
Ren S , Zhang X , Ren D , Yang X T , Zhang L . J. Instrum. Anal. (任顺,张雄,任东,杨信廷,张力. 分析测试学报), 2020 , 39 ( 7 ): 829 - 837 .
Wang Q Y , Li F S , Jiang X Y , Wu S L , Xie T F , Huang W G . J. Instrum. Anal. (王清亚,李福生,江晓宇,邬书良,谢涛锋,黄温钢. 分析测试学报), 2020 , 39 ( 11 ): 1327 - 1333 .
Lu S B , Li F S , Yang W Q , Zhang Q L , Su J , Zhao R Q , Lu X . J. Anal. Atom. Spectrom. , 2024 , 39 ( 3 ): 942 - 953 .
Yang W Q , Li F S , Zhao Y C , Lu X , Yang S Y , Zhu P F . Anal. Methods , 2022 , 14 ( 40 ): 3944 - 3952 .
Hao W Y , Hao X J , Yang Y W , Liu X D , Liu Y K , Sun P , Sun R . J. Anal. Atom. Spectrom. , 2021 , 36 ( 11 ): 2509 - 2518 .
Zhang K , Zuo W , Chen Y . IEEE Trans. Image Process. , 2017 , 26 ( 7 ): 3142 - 3155 .
Bradbury J , Merity S , Xiong C M , Socher R . The International Conference on Learning Representations . Toulon , France , 2017 : 1 - 12 .
Yang W Q , Li Z Q , Li F S , Lü S B , Fan J J . Spectrosc. Spectral Anal. (杨婉琪,李智琪,李福生,吕树彬,樊佳婧. 光谱学与光谱分析), 2024 , 44 ( 3 ): 670 - 674 .
Tang J , Luo Y B , Li X Y , Chen Y C , Wang P , Lu T , Ji X B , Pang Y Q , Zhu L J . Spectrosc. Spectral Anal. (唐杰,罗彦波,李翔宇,陈云璨,王鹏,卢天,纪晓波,庞永强,朱立军. 光谱学与光谱分析), 2024 , 44 ( 3 ): 731 - 736 .
GB/T 3190 - 2020 . Chemical Composition of Wrought Aluminium and Aluminium Alloys. National Standards of the People's Republic of China(变形铝及铝合金化学成分. 中华人民共和国国家标准) .
Li H D , Liang Y Z , Xu Q S , Cao D S . Anal. Chim. Acta , 2009 , 648 ( 1 ): 77 - 84 .
Yang W Q , Li F S , Zhang Q L , Lu S B . Anal. Chim. Acta , 2024 , 1323 : 343073 .
Li G , Ao J X , Hu J Y , Hu D L , Liu Y , Huang Z Q . Expert Syst. Appl. , 2024 , 237 ( 1 ): 1 - 14 .
Li R J , Wu Y , Wu Q , Dey N , Crespo R G , Shi F Q . Measurement , 2022 , 189 ( 1 ): 1 - 11 .
Ozkok F O , Celik M . Comput. Methods Programs Biomed. , 2021 , 207 ( 1 ): 1 - 20 .
Howard A , Sandler M , Chu G , Chen L C , Chen B , Tan M X , Wang W J , Zhu Y K , Pang R M , Vasudevan V , Le Q V , Adam H . IEEE/CVF International Conference on Computer Vision , 2019 : 1314 - 1324 .
Glorot X , Bordes A , Bengio Y . JMLR Workshop and Conference Proceedings , 2011 : 315 - 323 .
Du J L , Liu Y Y , Yu Y N , Yan W L . Algorithms , 2017 , 10 ( 2 ): 1 - 15 .
Krizhevsky A , Sutskever I , Hinton G E . Commun. ACM , 2017 , 60 ( 6 ): 84 - 90 .
Szegedy C , Liu W , Jia Y . IEEE Conference on Computer Vision and Pattern Recognition , 2015 : 1 - 9 .
Zhang X Y , Zhou X Y , Lin M X , Sun J . IEEE Conference on Computer Vision and Pattern Recognition , 2018 : 6848 - 6856 .
Sandler M , Howard A , Zhu M L , Zhmoginov A , Chen L C . IEEE Conference on Computer Vision and Pattern Recognition , 2018 : 4510 - 4520 .
Spectral Data Augmentation Methods and Their Application Progress
An Image Preprocessing Integration Strategy Combined with Improved YOLOv8 Model for Identification of Microalgae Species
Related Author
LIU Shu
AN Ya-rui
MIN Hong
LIU Hengqin
CAI Jing
MAO Ye-hui
TANG Lei
XIE Li-xia
Related Institution
Technical Center for Industrial Product and Raw Material Inspection and Testing of Shanghai Customs District
School of Materials and Chemistry,University of Shanghai for Science and Technology
State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,Hunan University
Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing,School of Life Science and Chemistry,Hunan University of Technology
School of Materials and Chemistry,Institute of Bismuth and Rhenium,University of Shanghai for Science and Technology