LI Yang,ZHANG Hong-yan,TIAN Ying,WANG Wei-guo.Preparation and Mass Spectrometric Characterization of Thiol-ligand-protected Gold Nanoclusters[J].Journal of Instrumental Analysis,2025,44(07):1307-1312.
LI Yang,ZHANG Hong-yan,TIAN Ying,WANG Wei-guo.Preparation and Mass Spectrometric Characterization of Thiol-ligand-protected Gold Nanoclusters[J].Journal of Instrumental Analysis,2025,44(07):1307-1312. DOI: 10.12452/j.fxcsxb.241023477.
Preparation and Mass Spectrometric Characterization of Thiol-ligand-protected Gold Nanoclusters
Nanoclusters possess unique atomic configurations,electronic structures,and novel optical,electrical,and catalytic properties,which make them widely applicable in fields such as catalysis,luminescent materials,detection devices,biology,and pharmaceuticals. Mass spectrometric characterization of nanoclusters can obtain precise mass number information of the nanoclusters,providing important informat
ion for the establishment of structural theoretical models. This paper introduced the characterization of the process products and final products during oil-phase preparation of gold nanoclusters using triple quadrupole mass spectrometry and laser desorption/ionization mass spectrometry. Firstly,the ions at each reaction stage were characterized by triple quadrupole mass spectrometry,and the parent ions and their fragment ions obtained by neutral loss mode were assigned. Secondly,the final products of the nanoclusters were characterized using laser desorption ionization mass spectrometry,and the effects of laser energy and matrix on the ionized products were investigated. The results showed that when 2-[3-(4-tert-butylphenyl)-2-methyl-2-propenyl] malononitrile was used as the auxiliary matrix,the signal intensity of the large number of clusters was significantly improved. A series of ions of gold nanoclusters were observed in the mass range of 2 500 to 5 300,with mass numbers of 2 817.7,3 014.7,3 211.7,3 441.8,3 637.8,3 866.7,4 063.8,4 260.7,4 489.7,4 688.8,4 883.8,5 112.9 and 5 309.9,respectively. These adjacent ions differed by one Au atom or AuS structural unit. Additionally,the peak of the gold cluster with the highest mass number was observed at positions 6 945 and 8 549,corresponding to Au
21
(C
12
H
25
S)
14
and Au
25
(C
12
H
25
S)
18
,respectively. The research results of this paper have important guiding significance and reference value for the synthesis of nanoclusters and the establishment of cluster structure models.
关键词
Keywords
references
Chun J , Zhang K , Zhang T , Liang W X , Song Y M , Guo P R . J. Instrum. Anal. (淳杰,张凯,张婷,梁维新,宋玉梅,郭鹏然. 分析测试学报), 2024 , 43 ( 8 ): 1144 - 1153 .
Shi W Q , Zeng L L , He R L , Han X S , Guan Z J , Zhou M , Wang Q M . Science , 2024 , 383 ( 6680 ): 326 - 330 .
Chakraborty I , Pradeep T . Chem. Rev. , 2017 , 117 ( 12 ): 8208 - 8271 .
Higaki T , Li Q , Zhou M , Zhao S , Li Y W , Li S T , Jin R C . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2764 - 2773 .
Nieto-Ortega B , Burgi T . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2811 - 2819 .
Tang Q , Hu G X , Fung V , Jiang D E . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2793 - 2802 .
Wang S X , Li Q , Kang X , Zhu M Z . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2784 - 2792 .
Gan Z B , Xia N , Woo Z K . Acc. Chem. Res. , 2018 , 51 ( 11 ): 2774 - 2783 .
Talik E , Pajaczkowska A , Guzik A , Zajdel P , Kusz J , Klos A , Szysiak A . Mater. Sci. Eng. B , 2014 , 182 : 74 - 80 .
Bellachioma G , Ciancaleoni G , Zuccaccia C , Zuccaccia D , Macchioni A . Coord. Chem. Rev. , 2008 , 252 ( 21/22 ): 2224 - 2238 .
Lei Z , Guan Z J , Pei X L , Yuan S F , Wan X K , Zhang J Y , Wang Q M . Chem. Eur. J. , 2016 , 22 ( 32 ): 11156 - 11160 .
Mustalahti S , Myllyperkio P , Lahtinen T , Salorinne K , Malola S , Koivisto J , Hakkinen H , Pettersson M . J. Phys. Chem. C , 2014 , 118 ( 31 ): 18233 - 18239 .
Savaloni H , Savari R . Mater. Chem. Phys. , 2018 , 214 : 402 - 420 .
Bromley S T , Sankar G , Catlow C R A , Maschmeyer T , Johnson B F G , Thomas J M . Chem. Phys. Lett. , 2001 , 340 ( 5/6 ): 524 - 530 .
Knoppe S , Vogt P . Anal. Chem. , 2019 , 91 ( 2 ): 1603 - 1609 .
Balasubramanian R , Guo R , Mills A J , Murray R W . J. Am. Chem. Soc. , 2005 , 127 ( 22 ): 8126 - 8132 .
Schaaff T G , Whetten R L . J. Phys. Chem. B , 2000 , 104 ( 12 ): 2630 - 2641 .
Ji J W , Wang G , Wang T W , You X Z , Xu X X . Nanoscale , 2014 , 6 ( 15 ): 9185 - 9191 .
Dass A , Stevenson A , Dubay G R , Tracy J B , Murray R W . J. Am. Chem. Soc. , 2008 , 130 ( 18 ): 5940 - 5946 .
Fields - Zinna C A , Sampson J S , Crowe M C , Tracy J B , Parker J F , deNey A M , Muddiman D C , Murray R W . J. Am. Chem. Soc. , 2009 , 131 ( 38 ): 13844 - 13851 .
Ghosh A , Udayabhaskararao T , Pradeep T . J. Phys. Chem. Lett. , 2012 , 3 ( 15 ): 1997 - 2002 .
Chen T K , Yao Q F , Nasaruddin R R , Xie J P . Angew. Chem. Int. Ed. , 2019 , 58 ( 35 ): 11967 - 11977 .
Hesari M , Ding Z F . J. Am. Chem. Soc. , 2021 , 143 ( 46 ): 19474 - 19485 .
Baksi A , Ghosh A , Mudedla S K , Chakraborty P , Bhat S , Mondal B , Krishnadas K R , Subramanian V , Pradeep T . J. Phys. Chem. C , 2017 , 121 ( 24 ): 13421 - 13427 .