REN Li-ying,WANG Ya-chen,GUI Yun-long,WANG Yue,HU Jia-min,GENG Tong-mou.The Study on 1,6-Disubstituted Pyrene-based Conjugated Microporous Polymers for Fluorescence Sensing of Picric Acid and o-Nitrophenol[J].Journal of Instrumental Analysis,2025,44(07):1321-1330.
REN Li-ying,WANG Ya-chen,GUI Yun-long,WANG Yue,HU Jia-min,GENG Tong-mou.The Study on 1,6-Disubstituted Pyrene-based Conjugated Microporous Polymers for Fluorescence Sensing of Picric Acid and o-Nitrophenol[J].Journal of Instrumental Analysis,2025,44(07):1321-1330. DOI: 10.12452/j.fxcsxb.241002435.
The Study on 1,6-Disubstituted Pyrene-based Conjugated Microporous Polymers for Fluorescence Sensing of Picric Acid and o-Nitrophenol
The 1,6-disubstituted pyrene-based conjugated microporous polymers(1,6-disubstituted pyrene-based CMPs,TTPDP and TDTPAP) were synthesized by Friedel-Crafts arylation reactions with the 1,6-disubstituted pyrene derivatives(TPDP and DTPAP) and 2,4,6-trichloride-1,3,5-triazine(TCT) at 140 ℃ for 48 h. After washing,extracted with Soxhlet's apparatus,and vacuum drying,TTPDP and TDTPAP gave 84.85% and 82.17% yield,respectively. The structures of the 1,6-disubstituted pyrene-based CMPs were characterized with FT-IR,solid state
13
C NMR,and solid-state UV-visible spectroscopy and confirmed to be the target products. The morphology of the 1,6-disubstituted pyrene-based CMPs was analyzed by powder X-ray diffraction(PXRD) and scanning electron microscope(SEM).The 1,6-disubstituted pyrene-based CMPs showed an amorphous network structures which have massive structures. TTPDP and TDTPAP are insoluble in any solvent and have excellent thermal stability with the high decomposition temperatures of 563 and 573 ℃,respectively. The pore properties of 1,6-disubstituted pyrene-based CMPs were investigated by nitrogen adsorption-desorption measurements of at 77.3 K. TTPDP and TDTPAP fit the type Ⅰ and Ⅱ gas adsorption isotherms and some hysteresis,respectively. The micropore diameters of TTPDP and TDTPAP are around 1.88 and 1.22 nm,respectively,and the BET surface areas are 187.5 and 695.2 m
2
·g
-1
,
V
0.1
/
V
tot
values are higher than 0.40,respectively,indicating the predominance of micropores in the networks. The fluorescent sensing properties of TTPDP and TDTPAP for the nitroaromatic compounds(NACs) were studied. TTPDP and TDTPAP have good fluorescence properties either in the solid state or dispersed in the solvent. The TTPDP and TDTPAP are easily dispersed in N,N-dimethylformamide(DMF) and 1,4-dioxane(DOX) and can emit bright cyan fluorescence under UV light at 365 nm,which is basically consistent with the colors in the CIE diagra
ms. Both TTPDP and TDTPAP can detect picric acid(PA) and
o
-nitrophenol(
o
-NP) in real time,showing high sensitivity and selectivity. The quenching coefficient(
K
SV
) of TTPDP to PA and TDTPAP to
o
-NP are 1.59×10
4
and 7.80×10
3
L·mol
-1
,with the limit of detection(LODs) of 2.82×10
-12
and 1.92×10
-10
mol·L
-1
,respectively. The mechanisms of TTPDP and TDTPAP fluorescence sensing PA and
o
-NP were explored by theoretical calculations using the program Gaussian 09 D.01 at the B3LYP/6-31G level and contrasting the UV-visible spectra of the analytes and the fluorescence spectra of the 1,6-disubstituted pyrene-based CMPs. TTPDP fluorescence sensing PA is the result of the combined action of electron transfer and energy transfer processes,whereas TDTPAP fluorescence detecting to
o
-NP is only the electron transfer process.1,6-Disubstituted pyrene-based CMPs have potential applications for the detection of NACs in environmental pollutants.
关键词
Keywords
references
Mondal B , Das G . React. Funct. Polym. , 2024 , 194 : 105800 .
Shen X Q , Yan B . J. Mater. Chem. A , 2024 , 12 ( 11 ): 6455 - 6464 .
Danis E Y , Bakhsh E M , Akhtar K . Int. J. Biol. Macromol. , 2020 , 159 : 276 - 286 .
Tan X P , Yang C Q , Xie Y L , Gou Q , Zhang R L , Ao E , Zhou X M , Chen Z A , Wang Q , Fu L . ACS Appl. Nano Mater. , 2024 , 7 ( 14 ): 16789 - 16798 .
Zhou H F , Li S X , Wu Y J , Chen D J , Li Y H , Zheng F Y , Yu H W . Sens. Actuators B , 2016 , 237 : 487 - 494 .
Deng P H , Liang J L , Chen D E , Cai F , Li Q Y , Wang T . J. Instrum. Anal. (邓培红,梁姣丽,陈冬儿,蔡芬,黎秋燕,王婷. 分析测试学报), 2018 , 3 ( 2 ): 204 - 210 .
Jiang L , Liang J Y , Wang Y T , Bao L C , Wu Y , Zheng Y G , Xia G P , Zhang X L , Zhang Q C . J. Instrum. Anal. (姜丽,梁峻毅,王玉彤,鲍林春,吴韵,郑玉国,夏光平,张小兰,张仟春. 分析测试学报), 2020 , 39 ( 9 ): 1065 - 1072 .
Wang Q Z , Li R , Zhao Y J , Zhe T T , Bu T , Liu Y N , Sun X Y , Hu H F , Zhang M , Zheng X H , Wang L . Talanta , 2020 , 219 : 121255 .
Huo T Y , He Y . ACS Appl . Mater. Inter. , 2024 , 16 : 21233 - 21241 .
Chen C C , Deng C H , Liu R Y , Chen L J . J . Instrum. Anal. (陈畅畅,邓崇海,刘仁勇,陈丽娟. 分析测试学报), 2024 , 43 ( 2 ): 351 - 360 .
Yuan D , Lu W , Zhao D . Adv. Mater. , 2011 , 32 : 3723 - 3725 .
Liu X M , Xu Y H , Jiang D L . J. Am. Chem. Soc. , 2012 , 134 ( 21 ): 8738 - 8741 .
Geng T M , Zhang C , Hu C , Liu M , Fei Y T , Xia H Y . New J. Chem. , 2020 , 44 : 2312 - 2320 .
Geng T M , Zhu Z M , Zhang W Y , Wang Y . J. Mater. Chem. A , 2017 , 5 : 7612 - 7617 .
Zhang Y X . J. Solid State Chem. , 2023 , 318 : 123736 .
Jiang S , Meng L C , Lv M X , Bai F Y , Tian W J , Xing Y H . Microporous Mesoporous Mater. , 2023 , 348 : 112408 .
Gao R R , Wei X S , Zhao W , Xie A M , Dong W . Anal. Chim. Acta , 2022 , 1192 : 339343 .
Cheng G , Wang K W , Wang S Y , Guo L P , Wang Z J , Jiang J X , Tan B E , Jin S B . Sci. China Mater. (程光,王科伟,汪圣尧,郭莉萍,王梓鉴,蒋加兴,谭必恩,金尚彬. 中国科学材料), 2021 , 64 ( 1 ): 149 - 174 .
Wang D X , Feng S Y , Liu H Z . Chem. Eur. J. , 2016 , 22 : 14319 - 14327 .
Lin G Q , Ding H M , Yuan D Q , Wang B S , Wang C . J. Am. Chem. Soc. , 2016 , 138 : 3302 - 3305 .
Dalapati S , Jin S , Gao J , Xu Y , Nagai A , Jiang D J . J. Am. Chem. Soc. , 2013 , 135 : 17310 - 17313 .
Guo L , Cao D P , Yun J , Zeng X F . Sens. Actuators B , 2017 , 243 : 753 - 760 .
Xia L X , Zhang H C , Feng B , Yang D Q , Bu N S , Zhang Y B , Yan Z J , Li Z N , Yuan Y , Zhao X J . Chem. J. Chin. Univ. (夏立新,张红翠,冯彬,杨东奇,布乃顺,赵云波,闫卓君,李樟楠,元野,赵晓君.高等学校化学学报), 2019 , 40 ( 12 ): 2456 - 2464 .
Wang M , Zhang H T , Guo L , Cao D P . Sens. Actuators B , 2018 , 274 : 102 - 109 .
Geng T M , Li D K , Zhu Z M , Zhang W Y , Ye S N , Zhu H , Wang Z Q . Anal. Chim. Acta , 2018 , 1011 : 77 - 85 .
Mohamed M G . Colloids Surf. A , 2024 , 680 : 132675 .
Wang M , Gao M J , Deng L L , Kang X , Zhang K L , Fu Q F , Xia Z N , Gao D . Microchem. J. , 2020 , 154 : 104590 .
Li Y K , He Y L , Guo F Y , Zhang S P , Liu Y Y , Lustig W P , Bi S M , Williams L J , Hu J , Li J . ACS Appl. Mater. Interfaces , 2019 , 11 ( 30 ): 27394 - 27401 .
Ejaz M , Mohamed M G , Kuo S W . ACS Appl. Polym. Mater. , 2024 , 6 ( 15 ): 9170 - 9179 .
Zhang Y , Wang G . Spectrochim. Acta A , 2024 , 318 : 124483 .
Guo L , Zeng X F , Cao D P . Sens. Actuators B , 2016 , 226 : 273 - 278 .
Chen Z , Chen M , Yu Y L , Wu L M . Chem. Commun. , 2017 , 53 : 1989 - 1992 .